

Technical Data

Unimotor and and

High performance AC brushless servo motors

Control Techniques Dynamics Limited

Control Techniques Dynamics is renowned for its innovations in the industrial servo, aerospace and defence markets since 1962 and is a member of the Emerson (USA) group of companies.

Our long experience provides a strong base to develop cost effective solutions for a spectrum of applications from machine tools, mechanical handling, pick and place machinery; through to specialised mechanisms and actuators for the avionics industry.

Our Research and Development team works closely with leading universities and, using our own proprietary software, designs innovative products for a wide range of demanding environments.

Control Techniques Dynamics offers continuous advances in product range, backed with the expertise and flexibility to meet the demands of your applications - now and in the future.

Contents

			Page.
1	Intro	duction to Unimotor fm	4
	1.1	Overview	4
	1.2	Ordering information	6
	1.3	Ratings	8
	1.4	Peak torque information	13
	1.5	Dimensions	14
2	Intro	duction to Unimotor fm fan blown motors	22
	2.1	Overview	22
	2.2	Quick reference table	22
	2.3	Peak torque information	23
	2.4	IP Ratings	23
	2.5	Ordering information	24
	2.6	Dimensions and ratings	26
3	Intro	duction to Unimotor hd	32
	3.1	Overview	32
	3.2	Unimotor hd ordering code information	33
	3.3	Quick reference table	33
	3.4	Dimensions and ratings	34
4	Gene	ric information	38
	4.1	Performance definitions	38
	4.2	Thermal test conditions	38
	4.3	Nameplate	39
	4.4	Motor selection	40
	4.5	Checklist of operating details	40
	4.6	Points to consider	41
	4.7	Special motor requests	41

			Page.
	4.8	Calculating load torque	42
	4.9	Understanding motor heating effects	43
	4.10	Motor derating	44
	4.11	Motor derate factors	44
	4.12	Feedback selection	45
	4.13	Feedback terminology	46
	4.14	Brake specification	48
	4.15	Radial load	49
	4.16	Bearing life and output shaft strength	54
5	Moto	r and signal cables	60
	5.1	Cable information	61
	5.2	Motor connector details	62
	5.3	Maximum cable length	63
	5.4	Power cable range	64
	5.5	Selecting connector kits	71
	5.6	Unimotor signal and power extension cables	72
	5.7	DS/MS conversion cables	73
6	Perfo	rmance graphs	74
	6.1	Unimotor fm	75
	6.2	Unimotor hd	96
	6.3	Unimotor fm fan blown	98
7	Pulley	installation	103
8	Decla	rations	104
9	Gener	ral	107

1 Introduction to Unimotor fm

1.1 Overview

Unimotor is a high performance brushless AC servo motor range matched for use with Control Techniques drives. '" stands for flexible motor, designed to accommodate a wide range of applications. The motors are available in seven frame sizes with various mounting arrangements and motor lengths.

1.1.1 Reliability and innovation

Unimotor is designed using a proven development process that prioritises innovation and reliability. This process has resulted in Control Techniques' market leading reputation for both performance and quality.

1.1.2 Matched motor and drive combinations

Control Techniques motors and drives are designed to function as an optimised system. Unimotor is the perfect partner for Unidrive , Digitax ST and Epsilon EP drives.

1.1.3 Features

Unimotor is suitable for a wide range of industrial applications, due to its extensive range of features

- → Torque range: from 0.72 Nm to 136 Nm
- Standard and high energy parking brakes
- → Numerous connector variants, e.g. vertical, 90° low profile, 90° rotatable and hybrid box on frame size 250
- → Variety of flange possibilities (IEC/NEMA)
- → Various shaft diameters; keyed or plain
- IP65 conformance; sealed against water spray and dust when mounted and connected
- → Low inertia for high dynamic performance; high inertia option available
- → World class performance
- Supported by rigorous testing for performance and reliability
- → Optional high peak torque motors; up to 5 times stall torque
- → Winding voltages of 400V and 220V
- → Rated speeds include 1500 rpm, 2000 rpm, 3000 rpm, 4000 rpm, 6000 rpm and others available

1.1.4 Faster set-up, optimised performance

When a Control Techniques servo drive is connected to a Unimotor fitted with a SinCos or Absolute encoder, it can recognise and communicate with the motor to obtain the "electronic nameplate" data. This motor data can then be used to automatically optimise the drive settings. This feature simplifies commissioning and maintenance, ensures consistent performance and saves time.

1.1.5 Accuracy and resolution to suit your application requirements

Choosing the right feedback device for your application is critical in getting optimum performance. Unimotor has a range of feedback options that offer different levels of accuracy and resolution to suit most applications:

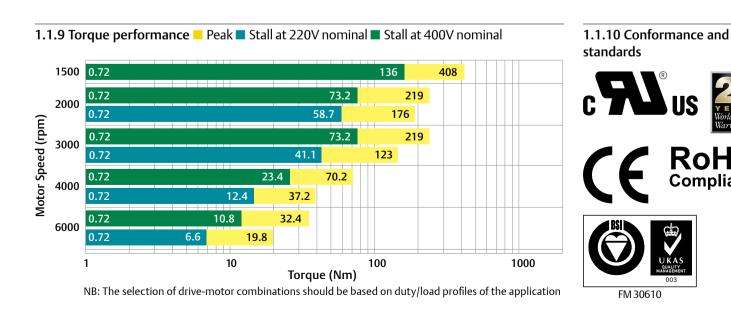
- Resolver: robust for extreme applications and conditions
 low accuracy, medium resolution
- → Incremental encoder: high accuracy, medium resolution
- → Inductive absolute: medium accuracy, medium resolution
- → Optical SinCos/Absolute: high accuracy, high resolution
- Single turn and multi-turn: Hiperface and EnDAT protocols supported

1.1.6 Ideal for retrofit

Unimotor is an ideal retrofit choice with features to ensure it can integrate easily with your existing servo motor applications. Unimotor has been designed so that existing Unimotor customers can easily migrate to the new platform. All connector interface types and mounting dimensions remain the same. If you are planing to retrofit your system, Unimotor is the obvious choice.

1.1.7 Custom built motors

As part of our commitment to you, we can design special products to meet your application specific requirements.


1.1.8 Wide range of accessories

Unimotor has a wide range of accessories to meet all your system requirements:

- → Feedback and power cables for static and dynamic applications
- → Fan boxes
- Gearboxes
- Cable connectors

1.2 Ordering information

Use the information below in the illustration to create an order code for a Unimotor The details in the band are an example of an order reference (Std = Standard selection, Opt = Optional selection)

095	U	2	В	30	1	V	
Frame size	Motor voltage	Peak torque selection	Stator length	Winding speed	Parking brake	Connection type	
055	E = 220V	055 frame only	055 frame	055 frame only	055 frame only	055 frame only	
075	U = 400V	2 = Standard peak torque	Α	30 = 3000 rpm	0 = Not fitted (Std)	B = Power and Signal	
095	250 frame only	075-142 frame only	В	60 = 6000 rpm	1 = Parking brake	90° rotatable (Std)	
115	U = 400V	2 = Standard peak torque	С	075-190 frame only	fitted 24Vdc	C = Power 90° rotatable	
142		P = High peak torque	075 frame	10 = 1000 rpm	X = Special	and Signal vertical	
190		190-250 frame only	Α	20 = 2000 rpm	075-190 frame only	V = Power and Signal vertical	
250		2 = Standard peak torque	В	25 = 2500 rpm	0 = Not fitted (Std)	X = Special	
			С	30 = 3000 rpm	1 = Parking brake	075-190 frame only	
			D	40 = 4000 rpm	fitted 24Vdc	A = Power and Signal 90° fixed	
			095-142 frame	45 = 4500 rpm	5 = High energy dissipation	B = Power and Signal	
			Α	50 = 5000 rpm	parking brake	90° rotatable	
			В	60 = 6000 rpm	X = Special	C = Power 90° rotatable	
			С	250 frame only	250 frame only	and Signal vertical	
			D	10 = 1000 rpm	0 = Not fitted (Std)	V = Power and Signal	
			E	15 = 1500 rpm	5 = High energy	vertical (Std)	
			190 frame	20 * = 2000 rpm	dissipation parking brake	X = Special	
			Α	25 * = 2500 rpm		250 frame only	
			В			C = Power 90° rotatable and	
			С			Signal vertical	
			D			*H=Power hybrid box	
			E			and Signal vertical (Std)	
			F			V = Power and Signal vertical	
			G				
			н				
			250 frame				
D and E le	engths, winding speed	equal and above	D				
winding	n must use the Hybrid b speed equal and above	oox. F lengths, 2000rpm	E				
must use	the Hybrid box.						

^{**} Optional PCD's will have a different register diameter from the standard motors. Please consult Drive Centre or Distributors for details.

^{* * *} Available on 190 frame only

Α	CA		Α	10	00		190	
Output shaft	Feedback device		Inertia	PCI	D**	9	Shaft diamete	r
A = Key (Std)	055 frame only		055 frame only		0	55 frame only	/	
B = Plain shaft	AR = Resolver		A = Standard	063	Std	09.0	Opt	
= Special	CR = Incremental Encoder	4096 ррг	075-190 frame only	070	Opt	11.0	A-C	Std
	MR = Incremental Encoder (Std)	2048 ррг	A = Standard			14.0	Max	
	KR = Incremental Encoder	1024 ppr	B = High Inertia		O	75 frame only	/	
	EM = Inductive Absolute Multi-turn	EQI 1130	250 frame only	075	Std	11.0	Α	Std
	FM = Inductive Absolute Single turn	ECI 1118	A = Standard	080	Opt	14.0	B-D	Std
	TL = Optical SinCos Multi-turn	SKM 36		085	Opt	19.0	Max	
	UL = Optical SinCos Single turn	SKS 36			0	95 frame only	/	
	XX = Special			100	Std	14.0	Α	Std
	075-142 frame only			098	Opt	19.0	B-E	Std
	AE = Resolver			115	Opt	22.0	Max	
	CA = Incremental Encoder (Std)	4096 ррг			1	15 frame only	/	
	MA = Incremental Encoder	2048 ррг		115	Std	19.0	A-C	Std
	KA = Incremental Encoder	1024 ррг		130	Opt	24.0	D-E	Std
	EB = Optical Absolute Multi-turn	EQN 1325		145	Opt	32.0	Max	
	FB = Optical Absolute Single turn	ECN 1313			1	42 frame only	/	
	EC = Inductive Absolute Multi-turn	EQI 1331		165	Std	24.0	A-E	Std
	FC = Inductive AbsoluteSingle turn	ECI 1319		149	Opt	32.0	Max	
	RA = Optical SinCos Multi-turn	SRM 50			1	90 frame only	/	
	SA = Optical SinCos Single turn	SRS 50		215	Std	32.0	А-Н	Std
	XX = Special					42.0	Max	
	190-250 frame only				2	50 frame only	/	
	AE = Resolver (Std for 250)			300	Std	48.0	D-F	Std
	CA = Incremental Encoder (Std for 190)	4096 ррг						
	MA = Incremental Encoder***	2048 ppr						
	EB = Optical Absolute Multi-turn	EQN 1325						
	FB = Optical Absolute Single turn	ECN 1313						
	RA = Optical SinCos Multi-turn	SRM 50						
	SA = Optical SinCos Single turn	SRS 50						

XX = Special

1.3 Ratings

1.3.1 3 Phase VPWM drives 200-240Vrms

 Δt = 100°C winding 40°C maximum ambient All data subject to +/-10% tolerance

Mat	or frame size (mm)		055E2			. 071	5E2				095E2			
Wote	· · ·			-				D	Δ.			D	-	
6 11	Frame length	A 0.72	B	C	Α	В	C	D	A	В	C	D	E	
	us stall torque (Nm)	0.72	1.18	1.65	1.2	2.2	3.1	3.9	2.3	4.3	5.9	7.5	9.0	
Standard (2) peak torque	` ,	2.88	4.72	6.60	3.6	6.6	9.3	11.7	6.9	12.9	17.7	22.5	27.0	
High (P) peak torque	` ,	N/A	N/A	N/A	6	11	15.5	19.5	10.4	19.4	26.6	33.8	40.5	
	dard inertia (kgcm²)	0.12	0.23	0.34	0.7	1.2	1.6	2.0	1.8	2.9	4.0	5.1	6.2	
	High inertia (kgcm²)	24.0	20.0	42.0	1.1	1.5	2.0	2.4	3.7	4.8	5.9	7.0	8.1	
<u> </u>	ermal time const. (s)	34.0	38.0	42.0	81	74	94	100	172	168	183	221	228	
	eight unbraked (kg)	1.20	1.50	1.80	3.60	4.40	5.20	6.00	5.10	6.30	7.50	8.70	9.90	
	weight braked (kg) Kt (Nm/A) =	1.60	1.90	2.20	4.10	4.90	5.70	6.50	5.70 (Nm/A) = 1.4	6.90	8.70	9.30	10.50	
Rated speed 2000 (rpm)	Ke (V/krpm) =								V/krpm) = 85					
	Rated torque (Nm)	C/D	C/D	C/D	1.1	2.1	3.0	3.8	2.2	4.0	5.5	6.9	8.2	
	Stall current (A)				0.9	1.6	2.3	2.8	1.7	3.1	4.3	5.4	6.5	
	Rated power (kW)				0.23	0.44	0.63	0.80	0.46	0.84	1.15	1.45	1.72	
	R (ph-ph) (Ω)				45.80	15.30	8.52	5.72	20.69	6.24	3.16	2.31	1.71	
	L (ph-ph) (mH)				74.10	34.71	21.50	16.16	72.40	22.50	13.73	10.79	8.70	
Rated speed 3000 (rpm)	0.74 45.00	0.87 52.50	0.91 55.00					(Nm/A) = 0.9 V/krpm) = 5						
	Rated torque (Nm)	0.70	1.05	1.48	1.1	2.0	2.8	3.5	2.0	3.9	5.4	6.8	8.1	
	Stall current (A)	0.97	1.36	1.81	1.3	2.4	3.4	4.2	2.5	4.7	6.4	8.1	9.7	
	Rated power (kW)	0.22	0.33	0.46	0.35	0.63	0.88	1.10	0.63	1.23	1.70	2.14	2.54	
	R (ph-ph) (Ω)	28.00	14.10	9.50	15.91	6.22	3.35	2.37	8.03	2.68	1.35	1.03	0.77	
	L (ph-ph) (mH)	50.00	32.00	23.00	30.33	14.74	9.54	7.08	22.04	8.70	6.10	4.48	3.99	
Rated speed 4000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =								(Nm/A) = 0. V/krpm) = 44					
	Rated torque (Nm)	C/D	C/D	C/D	1.0	1.7	2.3	2.9	1.8	3.0	4.0	4.9	5.7	
	Stall current (A)				1.7	3.1	4.4	5.5	3.2	6.0	8.2	10.5	12.5	
	Rated power (kW)				0.42	0.71	0.96	1.21	0.75	1.26	1.68	2.05	2.39	
	R (ph-ph) (Ω)				12.10	4.05	2.30	1.48	5.15	1.64	0.92	0.62	0.42	
	L (ph-ph) (mH)				19.60	8.88	5.85	4.20	13.00	7.28	3.80	2.75	2.18	
Rated speed 6000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =	0.45 27.00	0.43 26.00	0.48 29.00				Kt Ke ((Nm/A) = 0.4 V/krpm) = 28	47 3.50				
	Rated torque (Nm)	0.68	0.90	1.20	0.9	1.6	2.1	2.6	1.3	2.1	2.8	C/D	C/D	
	Stall current (A)	1.61	2.74	3.44	2.6	4.7	6.6	8.3	4.9	9.2	12.6			
	Rated power (kW)	0.43	0.57	0.75	0.57	1.01	1.32	1.63	0.82	1.32	1.76			
	R (ph-ph) (Ω)	8.50	3.60	2.40	5.20	1.77	0.95	0.65	2.00	0.67	0.39			
	L (ph-ph) (mH)	16.00	8.20	6.30	8.30	3.70	3.10	1.86	5.51	2.58	1.70			

C/D Consult Drive Centre/Distributor

N/A Not available

The information contained in this specification is for guidance only and does not form part of any contract

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20°C ambient at 12kHz drive switching frequency

Control Techniques have an ongoing process of development and reserve the right to change the specification without notice

All other figures relate to a 20°C motor temperature. Maximum intermittent winding temperature is 140°C

		115E2					142E2						190	E2			
Α	В	С	D	E	Α	В	С	D	E	Α	В	C	D	E	F	G	Н
3.5	6.6	9.4	12.4	15.3	5.7	10.8	15.3	19.8	23.4	C/D	21.8	C/D	41.1	C/D	58.7	C/D	73.2
10.5	19.8	28.2	37.2	45.9	17.1	32.4	45.9	59.4	70.2		65.4		123.0		176.0		219.0
14	26.4	37.6	49.6	61.2	22.8	43.2	61.2	79.2	93.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4.4	6.7	9.0	11.4	13.8	9.0	15.6	22.2	28.8	35.4		48.7		86.4		123.1		161.8
9.5	11.8	14.1	16.6	18.9	23.3	29.9	36.5	43.1	49.7		93.9		131.6		168.3		207.0
175	185	198	217	241	213	217	275	301	365		240		242		319		632
7.80	9.70	11.60	13.50	15.40	10.00	13.30	16.10	18.90	21.70		25.30		33.90		42.50		51.30
9.00	10.90	12.80	14.70	17.20	12.20	15.00	17.80	19.60	23.40		27.30		35.90		44.50		53.10
3.2	6.1	8.7	10.8	14.0	5.3	10.3	14.6	18.4	21.3	C/D	20.0	C/D	36.9	C/D	50.4	C/D	C/D
2.5	4.8	6.8	8.9	11.0	4.1	7.8	11.0	14.2	16.8		15.6		29.4		42.0		
0.67	1.28	1.82	2.26	2.93	1.11	2.16	3.06	3.85	4.46		4.19		7.73		10.6		
8.33	2.82	1.51	0.99	0.72	4.28	1.33	0.66	0.45	0.32		0.50		0.15		0.10		
43.50	14.91	9.89	7.11	5.77	26.74	11.53	7.31	5.55	4.40		7.77		2.50		2.73		
3.0	5.5	8.1	10.4	12.6	4.9	9.0	12.2	15.8	N/A	C/D	19.2	C/D	33.0	C/D	C/D	C/D	N/A
3.8	7.1	10.2	13.4	16.5	6.2	11.7	16.5	21.3			23.5		44.2				
0.94	1.73	2.54	3.27	3.96	1.54	2.83	3.83	4.96			6.03		10.4				
3.70	1.30	0.73	0.47	0.37	1.90	0.59	0.31	0.22			0.17		0.06				
15.94	7.23	4.82	3.37	3.49	11.87	5.12	3.35	3.32			2.62		1.26				
2.5	4.7	6.3	7.5	C/D	3.6	7.0	C/D	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4.9	9.2	13.1	17.3		8.0	15.0											
1.05	1.97	2.64	3.14		1.51	2.93											
2.07	0.70	0.44	0.29		1.20	0.36											
8.57	4.34	3.57	2.53		9.45	4.08											
2.2	4.0	C/D	N/A	N/A	2.9	C/D	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
7.5	14.1				12.2												
1.38	2.51				1.82												
0.96	0.30				0.49												
3.43	2.09				3.96												

1.3.2 3 Phase VPWM drives 380-480Vrms

 Δt = 100°C winding 40°C maximum ambient All data subject to +/-10% tolerance

Mot	or frame size (mm)		055U2			075	5U2				095U2			
WOO	` '	_											_	
	Frame length	Α	В	С	Α	В	С	D	Α	В	С	D	E	
	ous stall torque (Nm)	0.72	1.18	1.65	1.2	2.2	3.1	3.9	2.3	4.3	5.9	7.5	9.0	
Standard (2) peak torque	` ,	2.88	4.72	6.60	3.6	6.6	9.3	11.7	6.9	12.9	17.7	22.5	27.0	
High (P) peak torque	` '	N/A	N/A	N/A	6	11	15.5	19.5	10.4	19.4	26.6	33.8	40.5	
	dard inertia (kgcm²)	0.12	0.23	0.34	0.7	1.2	1.6	2.0	1.8	2.9	4.0	5.1	6.2	
	High inertia (kgcm²)				1.1	1.5	2.0	2.4	3.7	4.8	5.9	7.0	8.1	
	ermal time const. (s)	34.0	38.0	42.0	81	74	94	100	172	168	183	221	228	
	eight unbraked (kg)	1.20	1.50	1.80	3.60	4.40	5.20	6.00	5.10	6.30	7.50	8.70	9.90	
Standard moto	r weight braked (kg) Kt (Nm/A) =	1.60	1.90	2.20	4.10	4.90	5.70	6.50	5.70	6.90	8.70	9.30	10.50	
Rated speed 2000 (rpm)								(Nm/A) = 2.4 //krpm) = 14						
	Rated torque (Nm)	C/D	C/D	C/D	1.1	2.1	3.0	3.8	2.2	4.0	5.5	6.9	8.2	
	Stall current (A)				0.5	1.0	1.3	1.7	1.0	1.8	2.5	3.2	3.8	
	Rated power (kW)				0.23	0.44	0.63	0.80	0.46	0.84	1.15	1.45	1.72	
	R (ph-ph) (Ω)				144.00	48.20	25.00	15.70	64.00	17.00	9.90	6.00	4.30	
	L (ph-ph) (mH)				214.00	99.20	59.20	44.70	202.00	54.50	36.50	25.60	18.90	
Rated speed 3000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =	0.74 45.00	1.49 90.00	1.65 100.00				Kt Ke ((Nm/A) = 1.6 V/krpm) = 98	60 3.00				
	Rated torque (Nm)	0.70	1.05	1.48	1.1	2.0	2.8	3.5	2.0	3.9	5.4	6.8	8.1	
	Stall current (A)	0.97	0.79	1.00	0.8	1.4	2.0	2.5	1.5	2.7	3.7	4.7	5.7	
	Rated power (kW)	0.22	0.33	0.46	0.35	0.63	0.88	1.10	0.63	1.23	1.70	2.14	2.54	
	R (ph-ph) (Ω)	28.00	45.00	31.00	60.80	20.10	10.50	7.50	24.50	6.80	4.00	2.74	2.00	
	L (ph-ph) (mH)	50.00	100.00	75.00	98.40	41.80	27.60	19.70	57.90	24.30	15.50	13.62	8.50	
Rated speed 4000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =							Kt Ke ((Nm/A) = 1.2 V/krpm) = 73	20 3.50				
	Rated torque (Nm)	C/D	C/D	C/D	1.0	1.7	2.3	2.9	1.8	3.0	4.0	4.9	5.7	
	Stall current (A)				1.0	1.9	2.6	3.3	2.0	3.6	5.0	6.3	7.5	
	Rated power (kW)				0.42	0.71	0.96	1.21	0.75	1.26	1.68	2.05	2.39	
	R (ph-ph) (Ω)				36.80	10.50	6.30	4.20	12.70	4.08	2.10	1.50	1.03	
	L (ph-ph) (mH)				54.90	24.80	14.90	10.80	31.50	13.60	8.50	6.30	4.80	
Rated speed 6000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =	0.74 45.00	0.79 47.50	0.83 50.00				Kt Ke ((Nm/A) = 0.8 V/krpm) = 49	80 9.00				
	Rated torque (Nm)	0.68	0.90	1.20	0.9	1.6	2.1	2.6	1.3	2.1	2.8	C/D	C/D	
	Stall current (A)	0.97	1.50	2.00	1.5	2.8	3.9	4.9	2.9	5.4	7.4			
	Rated power (kW)	0.43	0.57	0.75	0.57	1.01	1.32	1.63	0.82	1.32	1.76			
	R (ph-ph) (Ω)	28.00	10.70	7.80	15.00	5.00	2.66	1.90	5.45	1.82	1.05			
	L (ph-ph) (mH)	50.00	25.00	20.00	24.00	10.60	6.80	4.80	14.10	6.00	3.80			

C/D Consult Drive Centre/Distributor

N/A Not available

The information contained in this specification is for guidance only and does not form part of any contract

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20°C ambient at 12kHz drive switching frequency

Control Techniques have an ongoing process of development and reserve the right to change the specification without notice

All other figures relate to a 20°C motor temperature. Maximum intermittent winding temperature is 140°C

	115U2					142U2					190U2							
	Α	В	С	D	E	Α	В	С	D	E	Α	В	С	D	E	F	G	н
	3.5	6.6	9.4	12.4	15.3	5.7	10.8	15.3	19.8	23.4	9.6	21.8	31.1	41.1	50.6	58.7	66.0	73.2
	10.5	19.8	28.2	37.2	45.9	17.1	32.4	45.9	59.4	70.2	28.8	65.4	93.3	123.0	151.6	176.0	198.0	219.0
	14	26.4	37.6	49.6	61.2	22.8	43.2	61.2	79.2	93.6	N/A							
	4.4	6.7	9.0	11.4	13.8	9.0	15.6	22.2	28.8	35.4	29.9	48.7	67.5	86.4	105.0	123.1	142.9	161.8
	9.5	11.8	14.1	16.6	18.9	23.3	29.9	36.5	43.1	49.7	75.1	93.9	112.7	131.6	150.2	168.3	188.1	207.0
	175	185	198	217	241	213	217	275	301	365	217	240	241	242	281	319	476	632
	7.80	9.70	11.60	13.50	15.40	10.00	13.30	16.10	18.90	21.70	21.00	25.30	29.60	33.90	38.20	42.50	46.80	51.30
	9.00	10.90	12.80	14.70	17.20	12.20	15.00	17.80	19.60	23.40	23.00	27.30	31.60	35.90	40.20	44.50	48.80	53.10
	3.2	6.1	8.7	10.8	14.0	5.3	10.3	14.6	18.4	21.3	9.3	20.0	28.4	36.9	43.8	50.4	53.0	54.7
	1.5	2.8	4.0	5.2	6.4	2.4	4.5	6.4	8.3	9.8	4.0	9.1	13.0	17.2	21.1	24.5	27.5	30.5
	0.67	1.28	1.82	2.26	2.93	1.11	2.16	3.06	3.85	4.46	1.90	4.19	5.90	7.73	9.20	10.6	11.1	11.5
7	27.80	8.55	4.55	2.96	2.17	12.00	3.60	2.10	1.35	0.98	6.15	1.54	0.83	0.50	0.39	0.30	0.30	0.17
1	108.00	40.50	25.70	21.90	17.36	83.00	35.90	18.70	13.60	10.70	52.90	23.55	15.00	8.81	8.68	7.16	6.73	4.63
	3.0	5.5	8.1	10.4	12.6	4.9	9.0	12.2	15.8	18.0	8.7	19.2	25.0	33.0	34.0	35.0	36.0	36.8
	2.2	4.2	5.9	7.8	9.6	3.6	6.8	9.6	12.4	14.7	6.0	13.7	19.4	25.7	31.6	36.7	41.3	45.8
	0.94	1.73	2.54	3.27	3.96	1.54	2.83	3.83	4.96	5.65	2.73	6.03	7.85	10.4	10.7	11.0	11.3	11.6
-	12.60	3.86	2.02	1.40	1.08	5.30	1.72	0.94	0.61	0.42	2.73	0.70	0.41	0.22	0.17	0.11	0.13	0.09
4	49.30	21.57	13.27	8.60	10.96	37.00	13.30	8.30	6.10	7.21	23.50	10.47	7.35	4.89	3.86	3.60	2.99	2.46
	2.5	4.7	6.3	7.5	8.7	3.6	7.0	8.9	10.7	12.2	7.0	17.5	21.5	29.0	N/A	N/A	N/A	N/A
	3.0	5.5	7.9	10.4	12.8	4.8	9.0	12.8	16.5	19.5	8.0	18.2	25.9	34.2				
	1.05	1.97	2.64	3.14	3.64	1.51	2.93	3.73	4.48	5.11	2.9	7.3	9.0	12.1				
	6.42	2.14	1.16	0.73	0.57	3.00	1.00	0.53	0.35	0.25	1.35	0.38	0.21	0.11				
i	26.73	10.20	6.60	4.70	3.90	21.00	7.50	5.67	3.60	3.25	13.21	6.05	3.75	2.40				
	2.2	4.0	C/D	C/D	N/A	2.9	4.5	C/D	C/D	N/A								
	4.4	8.3				7.2	13.5											
	1.38	2.51				1.82	2.83											
	3.10	0.97				1.33	0.46											
	12.30	4.81				9.23	3.44											

3 Phase VPWM drives 380-480Vrms

 Δt = 100°C winding 40°C maximum ambient All data subject to +/-10% tolerance

Mo	otor frame size (mm)		250U2	
	Frame length	D	E	F
Continu	ious stall torque (Nm)	92	116	136
Standard (2) peak torqu	e selection max (Nm)	276.0	348.0	408.0
High (P) peak torqu	e selection max (Nm)	N/A	N/A	N/A
Sta	ndard inertia (kgcm²)	275	337	400
	High inertia (kgcm²)	408	502	597
Winding t	hermal time const. (s)	439	486	608
Standard motor	weight unbraked (kg)	57.5	65.5	73.7
Standard mot	or weight braked (kg)	68.5	76.5	84.5
Speed 1000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =		(t (Nm/A) = 5.4 (V/krpm) = 32	
	Rated speed (rpm)	1000	1000	1000
	Rated torque (Nm)	75	92	106
	Stall current (A)	17.2	21.7	25.4
	Rated power (kW)	7.9	9.6	11.1
	R (ph-ph) (Ω)	0.61	0.48	0.34
	L (ph-ph) (mH)	22.9	19.1	14.9
Speed 1500 (rpm)	Kt (Nm/A) = Ke (V/krpm) =		(t (Nm/A) = 3.6 (V/krpm) = 2	
	Rated speed (rpm)	1500	1500	1500
	Rated torque (Nm)	67	76	84
	Stall current (A)	25.8	32.5	38.1
	Rated power (kW)	10.5	11.9	13.2
	R (ph-ph) (Ω)	0.27	0.21	0.15
	L (ph-ph) (mH)	10	8.6	6.6
Speed 2000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =		(t (Nm/A) = 2.7 (V/krpm) = 16	
	Rated speed (rpm)	1500	1500	1500
	Rated torque (Nm)	65	73	81
	Stall current (A)	34.4	43.4	50.9
	Rated power (kW)	10.2	11.5	12.7
	R (ph-ph) (Ω)	0.15	0.1	0.08
	L (ph-ph) (mH)	5.7	4.2	3.7
Speed 2500 (rpm)	Kt (Nm/A) = Ke (V/krpm) =		(t (Nm/A) = 2.1 (V/krpm) = 12	
	Rated speed (rpm)	1500	1500	1500
	Rated torque (Nm)	62	70	77
	Stall current (A)	43.0	54.2	63.6
	Rated power (kW)	9.7	11	12.1
	R (ph-ph) (Ω)	0.09	0.08	0.06
	L (ph-ph) (mH)	3.5	3.1	2.6

For the 250 motor frame size, resolver feedback is standard.

The Unimotor fm 250 servo motor has been designed to give greatest motor efficiency up to a rated, or rms, speed of 1500 rpm. The range does include the optional speeds of 2000rpm and 2500rpm. These windings will allow the end user to enter the intermittent speed zone as well as the intermittent torque zone on the 250 motor.

These higher speed windings are designed with optimum kt values that allow increased speed without demanding very high currents

The Unimotor fm 250 is designed for S2 to S6 duties and as such the rms values play an important part in the motor selection for torque and speed.

C/D Consult Drive Centre/Distributor

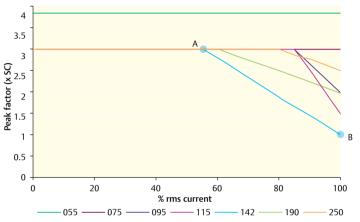
N/A Not available

The information contained in this specification is for guidance only and does not form part of any contract

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20°C ambient at 12kHz drive switching frequency

Control Techniques have an ongoing process of development and reserve the right to change the specification without notice

All other figures relate to a 20°C motor temperature. Maximum intermittent winding temperature is 140°C


1.4 Peak torque information

Unimotor fm has two levels of peak torque available within the range, standard peak torque (code 2) and the high peak torque range (code P).

On some of the frame sizes the full peak torque can not be achieved at the full 100% rms current level. As shown below the 055 and 075 motors are not affected by the reduced levels and remains constant up to 100% rms current, whereas the 075-250 motors all show a drop at some point along the % rms current line.

The graph below shows the standard peak factor for each frame size.

Standard (2) peak torque

To use this graph correctly the rms current and rms speed of the application have to be calculated. The rms current value must then be converted into a percentage of the full motor current available, at that rms speed value. If the full current available is 10Amps and the rms current is 7.5Amps, then the percentage rms current value is 75%. This value can then be plotted onto the graph in order to obtain the peak factor. The peak factor is then used as part of the calculation, shown below, for the peak torque value.

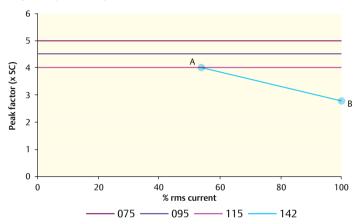
Peak factor x Stall current x kt = Peak torque

An example would be with a 142U2E300 motor where the % rms current value is calculated to 50%, the peak factor would be 3. (Point A)

Peak factor x Stall current x kt = Peak torque

3.00 x 14.7 x 1.6 = 70.2Nm

But if the % rms current value were to be calculated at a level of 100%, the peak factor would equal 1.00. (Point B)


Peak factor x Stall current x kt = Peak torque

1.00 x 14.7 x 1.6 = 23.4Nm

Peak torque is defined for a maximum period of 250ms, rms 3000rpm Δ max = 100°C, 40°C ambient.

Unimotor fm	Peak factor 09	Peak factor 0% to 100% rms								
055	3.8									
075	3.	.0								
095	Peak factor 0% to 88% rms	Peak factor @ 100% rms								
095	3.0	2.0								
115	Peak factor 0% to 86% rms	Peak factor @ 100% rms								
115	3.0	1.5								
142	Peak factor 0% to 57% rms	Peak factor @ 100% rms								
142	3.0	1.0								
190	Peak factor 0 % to 60% rms	Peak factor @ 100% rms								
190	3.0	2.0								
250	Peak factor 0% to 80% rms	Peak factor @ 100% rms								
250	3.0	2.5								

High (P) peak torque

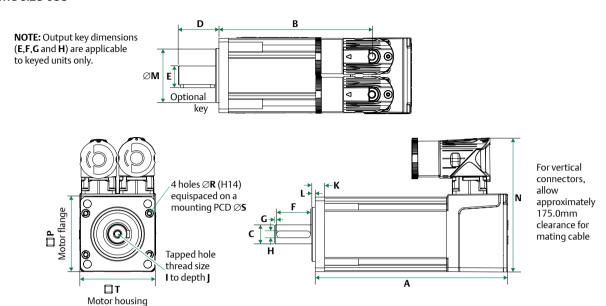
As shown above the 075 increases to 5 times, 095 increases to 4.5 times, the 115 increases to 4 times across the % rms current line and the 142 shows an increase to 4 times up until 57% dropping to 2.5 times at 100%.

Unimotor fm	Peak factor 0% to 100% rms
075	5.0
095	4.5
115	4.0
142	Peak factor 0% to 57% rms Peak factor @ 100% rms
142	4 2.5
Peak factor	x Stall current x kt = Peak torque

An example would be with a 142U2E300 motor where the % rms current value is calculated to 50%, the peak factor would now be 4. (Point A)

Peak factor	x Stall current	х	kt	=	Peak torque
4.00	x 14.7	х	1.6	=	93.6Nm

But if the % rms current value were to be calculated at a level of 100%, the peak factor would equal 2.5. (Point B)


Peak factor x Stall current x kt = Peak torque

Peak factor	x Stall current	х	kt	=	Peak torque
2.50	x 14.7	х	1.6	=	58.8Nm

1.5 Dimensions

1.5.1 Frame size 055

Standard motor dimension (mm) Note all dimensions shown are at nominal

	Unbraked length		Braked length		Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hold PCD	Motor housing	Mounting bolts
	Α	В	Α	В	K	L	M (j6)	N	P	R (H14)	S	T	
055A	118.0	90.0	158.0	130.0									
055B	142.0	114.0	182.0	154.0	7.0	2.5	40.0	99.0	55.0	5.8	63.0	55.0	M5
055C	166.0	138.0	206.0	178.0									

Vertical connectors dimension (mm)

Note all dimensions shown are at nominal

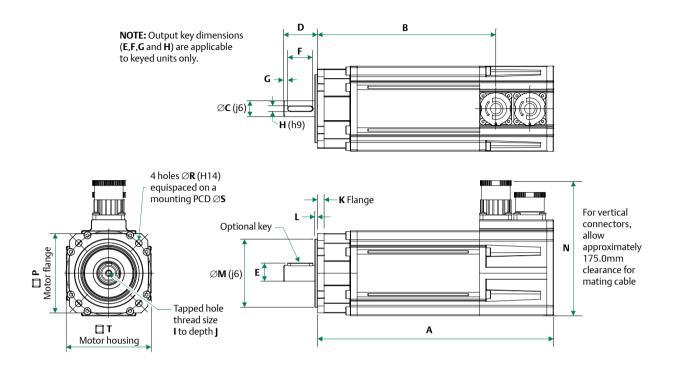
	Unbr len		Bra len	ked gth	Power connector	Signal connector
	B1	B2	B1	B2	N	N
055A	75.0	83.0	115.0	123.0	104.0	93.0
055B	99.0	107.0	139.0	147.0	104.0	93.0
055C	123.0	131.0	163.0	173.0	104.0	93.0

Optional connector height (mm)

C type	96.00
V type	105.0

Output shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	C (j6)	D	E	F	G	H (h9)	1	J
9.0 Opt	9.0	20.0	10.2	15.0	1.0	3.0	M4	10.0
11.0 A-C Std	11.0	23.0	12.5	15.0	1.5	4.0	M4	10.0
14.0 Max	14.0	30.0	16.0	25.0	1.5	5.0	M5	12.5


NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

Optional flange dimensions (mm)

PCD code	Front end frame	Flange thickness	Register length	Fixing hole diameter	Flange square	Fixing hole diameter	Fixing hold PCD	Mounting bolts
	type	К	L	M (j6)	Р	R (H14)	S	
070	Flat	6	3	50	60	5.5	70	M5

1.5.2 Frame size 075

Standard motor dimension (mm) Note all dimensions shown are at nominal

		aked gth		ked gth	Flange thick- ness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A (± 0.9)	B (± 1.0)	A (± 0.9)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	N (± 1.0)	P (± 0.1)	R (H14)	S (± 0.4)	T (± 0.45)	
075A	208.2	157.2	253.2	202.2									
075B	238.2	187.2	283.2	232.2	- 0		50.0	440.5		- 0	75.0	75.0	
075C	268.2	217.2	313.2	262.2	5.8	2.40	60.0	118.5	70.0	5.8	75.0	75.0	M5
075D	298.2	247.2	343.2	292.2									

Optional flat flange motor dimensions (mm)

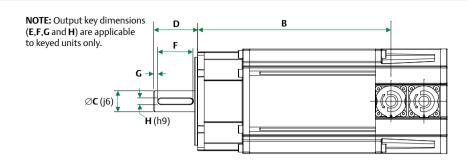
	Unbr len		Braked length			
	A (± 0.9)	B (± 1.0)	A (± 0.9)	B (± 1.0)		
075A	192.6	141.6	237.6	186.6		
075B	222.6	171.6	267.6	216.6		
075C	252.6	201.6	297.6	246.6		
075D	282.6	231.6	327.6	276.6		

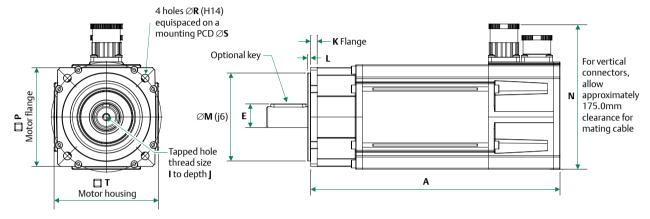
Optional connector height (mm)

Connection tune	Overall height
Connection type	N (± 1.0)
Α	118.5
В	126.0
С	126.0

Optional flange dimensions (mm)

PCD code	Front end	Flange square	Fixing hole PCD	Register diameter	Fixing hole diameter	
PCD code	frame type	P (± 0.1)	S (± 0.4)	M (j6)	R (H14)	
075	Extended	70.0	66.7 - 75.0	60.0	5.80	
080	Extended	70.0	75.0 - 80.0	60.0	5.80	
085	Flat	80.0	85.0	70.0	7.00	


Output shaft dimensions (mm)


	Shaft diameter	Shaft length	Key height		Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth	
	C (j6)	D (± 0.45)	E (To IEC 72-1)	F (± 0.25)	G (± 1.1)	H (h9)	I	J (± 1.0)	
11.0 A Std	11.0	23.0	12.5	14.0	3.6	4.0	M4 x 0.4	11.0	
14.0 B-D Std	14.0	30.0	16.0	22.0	3.6	5.0	M5 x 0.8	13.5	
19.0 Max	19.0	40.0	21.5	32.0	3.6	6.0	M6 x 1.0	17.0	

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

1.5.3 Frame size 095

Standard motor dimension (mm) Note all dimensions shown are at nominal

		aked gth		ked gth	Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A (± 0.9)	B (± 1.0)	A (± 0.9)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	N (± 1.0)	P (± 0.1)	R (H14)	S (± 0.4)	T (± 0.6)	
095A	226.9	175.9	271.9	220.9									
095B	256.9	205.9	301.9	250.9					31.5 90.0	0 7.0	100.0	95.0	M6
095C	286.9	235.9	331.9	280.9	5.9	2.80	80.0	131.5					
095D	316.9	265.9	361.9	310.9									
095E	346.9	295.9	391.9	340.9									

Optional flat flange motor dimensions (mm)

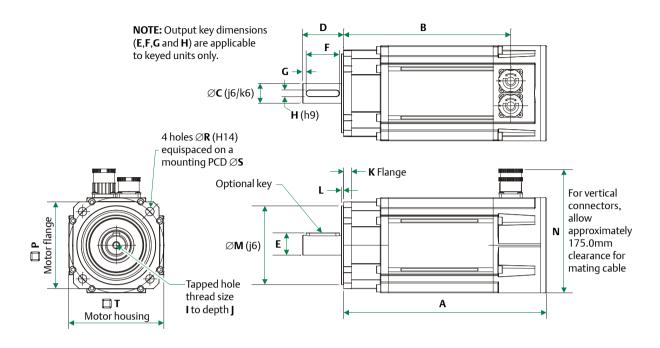
	Unbr len		Bra len	ked gth
	A (± 0.9)	B (± 1.0)	A (± 0.9)	B (± 1.0)
095A	201.8	150.8	246.8	195.8
095B	231.8	180.8	276.8	225.8
095C	261.8	210.8	306.8	255.8
095D	291.8	240.8	336.8	285.8
095E	321.8	270.8	366.8	315.8

Optional connector height (mm)

Connection type	Overall height
Connection type	N (± 1.0)
Α	131.5
В	139.0
С	139.0

Optional flange dimensions (mm)

PCD code	Front end frame	Flange square	Fixing hole PCD	Register diameter	Flange thickness	Fixing hole diameter
	type	P (± 0.1)	S (± 0.4)	M (j6)	K (± 0.5)	R (H14)
098	Extended	90.0	98.43	73.0	6.8	7.0
115	Flat	105.0	115.0	95.0	6.8	10.0


Output shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	C (j6)	D (± 0.45)	E (To IEC 72-1)	F (± 0.25)	G (± 1.1)	H (h9)	1	J (± 1.0)
14.0 A Std	14.0	30.0	16.0	22.0	3.6	5.0	M5 x 0.8	13.5
19.0 B-E Std	19.0	40.0	21.5	32.0	3.6	6.0	M6 x 1.0	17.0
22.0 Max	22.0	50.0	24.5	40.0	4.6	6.0	M8 x 1.25	20.0

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

1.5.4 Frame size 115

Standard motor dimension (mm) Note all dimensions shown are at nominal

	Unbr len	aked gth		ked gth	Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A (± 0.9)	B (± 1.0)	A (± 0.9)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	N (± 1.0)	P (± 0.2)	R (H14)	S (± 0.4)	T (± 0.6)	
115A	245.2	202.	290.2	247.0									
115B	275.2	232.0	320.2	277.0						10.0	115.0	115.0	M8
115C	305.2	262.0	350.2	307.0	9.6	2.80	95.0	149.0	105.0				
115D	335.2	292.0	380.2	337.0									
115E	365.2	322.0	410.2	367.0									

Optional flat flange motor dimensions (mm)

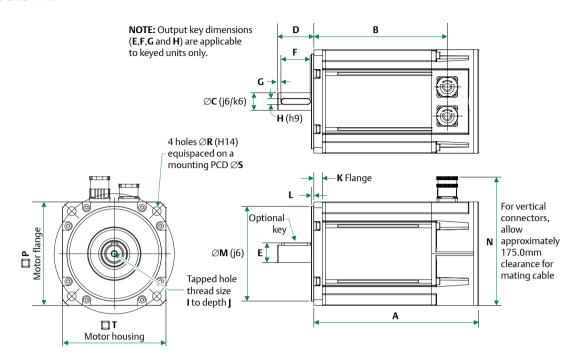
	Unbr len	aked gth	Braked length		
	A (± 0.9)	B (± 1.0)	A (± 0.9)	B (± 1.0)	
115A	214.4	171.2	259.4	216.2	
115B	244.4	201.2	289.4	246.2	
115C	274.4	231.2	319.4	276.2	
115D	304.4	261.2	349.4	306.2	
115E	334.4	291.2	379.4	336.2	

Optional connector height (mm)

Commention to man	Overall height
Connection type	N (± 1.0)
Α	149.0
В	156.5
С	156.5

Optional flange dimensions (mm)

PCD	Front end	Flange square Fixing hole PCD F		Register diameter	Fixing hole diameter
code	frame type	P (± 0.2)	S (± 0.4)	M (j6)	R (H14)
130	Flat	130.0	130.0	110.0	10.0
145	Flat	130.0	130.0 – 145.0	110.0	10.0


Output shaft dimensions(mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	C (j6)	D (± 0.45)	E (To IEC 72-1)	F (± 0.25)	G (± 1.1)	H (h9)	1	J (± 1.0)
19.0 A-C Std	19.0	40.0	21.5	32.0	3.6	6.0	M6 x 1.0	17.0
22.0 Opt	22.0	50.0	24.5	40.0	4.6	6.0	M8 x 1.25	20.0
24.0 D-E Std	24.0	50.0	27.0	40.0	4.6	8.0	M8 x 1.25	20.0
28.0 Opt	28.0	60.0	31.0	50.0	4.6	8.0	M10 x 1.5	23.0
32.0 Max	32.0 (K6)	80.0	35.0	70.0	4.6	10.0	M12 x 1.75	29.0

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

1.5.5 Frame size 142

Standard motor dimension (mm) Note all dimensions shown are at nominal

		aked gth		ked gth	Flange thickness	Register length	Register diameter	Overall height vertical	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A (± 0.9)	B (± 1.0)	A (± 0.9)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	N (± 1.0)	P (± 0.2)	R (H14)	S (± 0.4)	T (± 0.7)	
142A	226.2	183.0	271.2	228.0									
142B	256.2	213.0	301.2	258.0			3.4 130.0	176.0	142.0	12.0	165.0	142.0	M10
142C	286.2	243.0	331.2	288.0	11.6	3.4							
142D	316.2	273.0	361.2	318.0									
142E	346.2	303.0	391.2	348.0									

Optional motor flange dimensions (mm)

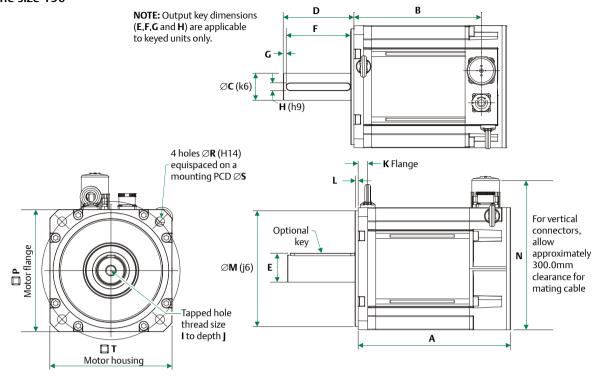
	Unbr len	aked gth	Braked length			
	A(± 0.9)	B (± 1.0)	A (± 0.9)	B (± 1.0)		
142A	273.4	230.2	318.4	275.2		
142B	303.4	260.2	348.4	305.2		
142C	333.4	290.2	378.4	335.2		
142D	363.4	320.2	408.4	365.2		
142E	393.4	350.2	438.4	395.2		

Optional connector height (mm)

C	Overall height
Connection type	N (± 1.0)
Α	176.0
В	183.5
C	183.5

Optional flange dimensions (mm)

PCD code	Front end frame	Flange square	Fixing hole PCD	Register diameter	Flange thickness	Fixing hole diameter
	type	P (± 0.2)	S (± 0.1)	M (j6)	K (± 0.5)	R (H14)
149	Extended	140.0	149.23	114.3	11.5	12.0


Output shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	C (j6)	D (± 0.45)	E (To IEC 72-1)	F (± 0.25)	G (± 1.1)	H (h9)	1	J (± 1.0)
22.0 Opt	22.0	50.0	24.5	40.0	4.6	6.0	M8 x 1.25	20.0
24.0 A-E Std	24.0	50.0	27.0	40.0	4.6	8.0	M8 x 1.25	20.0
28.0 Opt	28.0	60.0	31.0	50.0	4.6	8.0	M10 x 1.5	23.0
32.0 Max	32.0 (K6)	80.0	35.0	70.0	4.6	10.0	M12 x 1.75	29.0

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

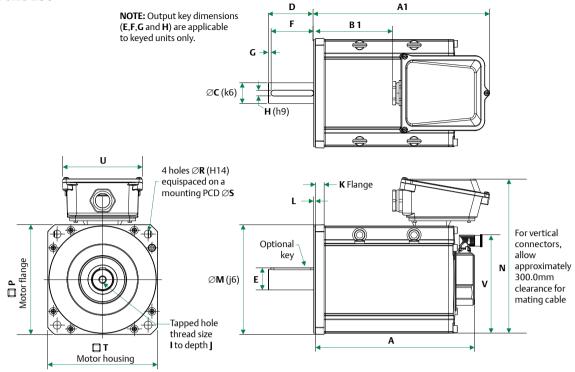
1.5.6 Frame size 190

Standard motor dimension (mm) Note all dimensions shown are at nominal

	Unbr len			ked gth	Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Mounting bolts
	A (± 0.9)	B (± 1.0)	A (± 0.9)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	N (± 1.0)	P (± 0.2)	R (H14)	S (± 0.4)	T (± 1.5)	
190A	237.4	198.2	318.2	279.0									
190B	264.3	225.1	345.2	306.0									
190C	291.3	252.1	372.1	332.9			400.0	232.0	190.0		215.0	190.0	M12
190D	318.2	279.0	399.1	359.9	15.0	2.00				14.5			
190E	345.2	306.0	426.0	386.8	15.0	3.90	180.0						
190F	372.1	332.9	453.0	413.8									
190G	399.1	359.9	479.9	440.7									
190H	426.0	386.8	506.9	467.7									

Optional connector height (mm)

Comment on town	Overall height
Connection type	N (± 1.0)
Α	245.0
В	252.5
С	252.5


Output shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	C (j6)	D (± 0.45)	E (To IEC 72-1)	F (± 0.25)	G (± 1.1)	H (h9)	1	J (± 1.0)
28.0 Opt	28.0	60.0	31.0	50.0	4.6	8.0	M10 x 1.5	23.0
32.0 A-H Std	32.0 (k6)	80.0	35.0	70.0	4.6	10.0	M12 x 1.75	29.0
38.0 Opt	38.0 (k6)	80.0	41.0	70.0	4.6	10.0	M12 x 1.75	29.0
42.0 Max	42.0 (k6)	110.0	45.0	100.0	4.6	12.0	M16 x 2.0	37.0

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

1.5.7 Frame size 250

Standard motor dimension (mm) Note all dimensions shown are at nominal

	Motor Length		1	Flange thickness	Register length	Register diameter	Overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Motor housing	Hybrid box width	Signal connector height	Mounting bolts
	A (± 1.3)	A1 (± 2.0)	B1 (± 1.3)	K (± 0.5)	L (± 0.1)	M (j6)	N (± 1.0)	P (± 0.6)	R (H14)	S (± 0.4)	T (± 1.0)	U (± 0.4)	V (± 1.0)	
	U	Inbraked moto	or											
250D	370.7	406.1	179.7											
250E	400.7	436.1	209.7			250.0		256.0	18.5			186.0	228.5	
250F	430.7	466.1	239.7	20.0	4.50		362.8			300.0	249.5			M16
		Braked motor		20.0	4.30	230.0	302.6	230.0	10.5	300.0	249.3	100.0	220.3	IVI I O
250D	442.5	477.9	251.5											
250E	472.5	507.9	281.5											
250F	502.5	537.9	311.5											

Output shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	C (k6)	D (± 0.45)	E (To IEC 72-1)	F (± 0.25)	G (± 1.1)	H (h9)	I	J (± 1.0)
38.0 Opt	38.0	80.0	41.0	70.0	4.6	10.0	M12 x 1.75	29.0
42.0 Opt	42.0	110.0	45.0	100.0	6.0	12.0	M16 x 2.0	37.0
48.0 D-F Std	48.0	110.0	51.5	100.0	6.0	14.0	M16 x 2.0	37.0

Optional connector height (mm)

Commention to me	Power overall height	Signal overall height
Connection type	N (± 1.0)	V (± 1.0)
٧	291.5	221.0
C	312.5	221.0

NOTE: Shaft options below the standard (Std) dimensions will require customer approval and may not be covered by warranty.

www.control techniques.com

2 Introduction to Unimotor fm fan blown motors

2.1 Overview

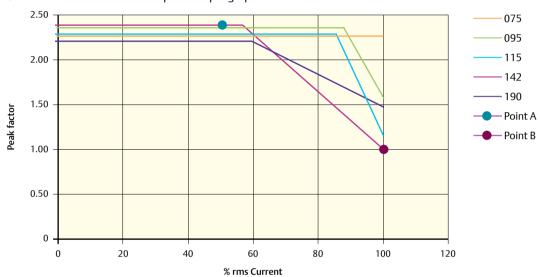
Based on Unimotor fm mechanics with modified electromagnetic construction, the fan blown version has been designed to give greater performance across the torque range. For example, the 190 fan blown variant increases the stall torque from 50.6Nm to 68Nm when compared to the standard Unimotor fm motor. This extra torque allows for increased application performance with higher rms values achievable.

The motors available have been selected to give the best torque increases across the available frame sizes.

To allow for the higher currents required, the 142 fan blown range is only available with the size 1.5 (53A rated) power connector.

2.2 Quick reference table

Frame size	PCD (mm)				Unimo	tor U4				Page No.
075	75		5.2							26
095	100			9.0						27
115	115					15.2 20.01				28
142	165					18	.9 29.5			29
190	215							41.0	79.0	30
Stall	0	5	8	10	15	20	30	50	80	(Nm)



2.3 Peak torque information

With the Unimotor fm fan blown range, the stall and rated torque increase while there is no increase in the peak torque value. This means that the peak factors for fan blown motors are different to standard self cooled motors and these new values are shown in the table right.

Unimotor fm	Peak factor @	0 -100% rms
075	2	25
095	Peak factor @ 0 to 88% rms	Peak factor @ 100% rms
095	2.35	1.57
115	Peak factor @ 0 to 86% rms	Peak factor @ 100% rms
115	2.28	1.14
142	Peak factor @ 0 - 57% rms	Peak factor @ 100% rms
142	2.38	1.00
100	Peak factor @ 0 - 60% rms	Peak factor @ 100% rms
190	2.20	1.47

Unimotor fm fan blown motor peak torque graph

Peak torque is defined for a maximum period of 250ms, rms 3000rpm, Δmax = 100°C, 40°C ambient

To use this graph correctly the rms current and rms speed of the application have to be calculated. The rms current value must then be converted into a percentage of the full motor current available, at the rms speed value. If the full current available is 10A and the rms current is 7.5A, then the percentage rms current value is 75%. This value can then be plotted onto the graph in order to obtain the peak factor. The peak factor is then used as part of the calculation, shown below, for the peak torque value.

Peak factor x Stall current x kt = Peak torque

An example would be with a 142U4E300 motor, where the % rms current value is calculated to 50%, the peak factor would be 2.38. (Point A)

Peak factor	x Stall current	x	kt	=	Peak torque
2.38	x 18.4	х	1.6	=	70.2Nm

But if the % rms current value were to be calculated at a level of 100%, the peak factor would equal 1.00. (Point B)

Peak factor	x Stall current	X	kt	=	Peak torque
1.00	x 18.4	х	1.6	=	29.5Nm

2.4 IP Ratings

Motor

IP65S - No ingress of dust; no contact with or approach to live or moving parts inside the enclosure. Water projected by a nozzle against enclosure from any direction shall have no harmful effects. (Excluding the front shaft seal.)

(S = device standing still during water test)

Fan motor and circuit board

IP54 - The fan motor and circuit board are coated to protect them against splash water and humidity.

Complete Unimotor fm fan blown motor assembly

IP20 - Protected against solid objects >12mm. E.g. fingers.

2.5 Ordering information

Use the information below in the illustration to create an order code for a Unimotor IIII The details in the band are an example of an order reference (Std = Standard selection, Opt = Optional selection)

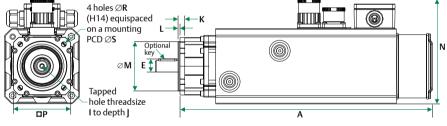
095	U	4	D	60	0	V	
Frame size	Motor voltage	Peak torque selection	Stator length	Winding speed	Brake	Connection type*	
	075 -190 frame	075 -190 frame	075 frame	075 frame	075 -190 frame	075 -190 frame	
075	U = 400V	4 =Peak torque	D	60 = 6000 rpm	0 = Not fitted (Std)	A = Power and Signal 90° fixed	
095			095 frame	095 frame	1 = Parking brake	B = Power and Signal	
115			D	60 = 6000 rpm	fitted 24Vdc	90° rotatable	
142			115 frame	115 frame	5 = High energy	C = Power 90° rotatable and Signal vertical	
190			D	40 = 4000 rpm	dissipation parking brake		
			E	142 frame	X = Special	V = Power and Signal	
			142 frame	30 = 3000 rpm		vertical	
			С	190 frame		X = Special	
			E	C & E: 30 = 3000 rpm			
			190 frame	F: 20 = 2000 rpm			
			С				
			E				
			F				

^{*142} and 190 frame motors the power plug will be size 1.5

						00		20
	Α	MA		Α	10	00	2.	20
0	ıtput shaft	Feedback device		Inertia	Di	CD	Shaft diameter	
	-190 frame	075 - 142 frame		075 -190 frame	r	075 f		iametei
		AE = Resolver		A = Standard	075			D Ct-I
	Keyed				075	Std	19.0	D Std
	Plain shaft	CA = Incremental Encoder	4096 ppr	B = High		095 f		
X = 9	Special	MA = Incremental Encoder	2048 ррг		100	Std	22.0	D Std
		KA = Incremental Encoder	1024 ррг			115 f	rame	
		EB = Optical Absolute Multi-turn EQN			115	Std	24.0	D Std
		EC = Inductive Absolute Multi-turn	EQI 1331				28.0	E Std
		FB = Optical Absolute Single turn	ECN 1313		142 frame			
		FC = Inductive Absolute Single turn	ECI 1319		165	Std	28.0	C/E Std
		RA = Optical SinCos Multi-turn	SRM 50			190 f	rame	
		SA = Optical SinCos Single turn	SRS 50		215	Std	32.0	C Std
		XX = Special					38.0	E/F Std
		190 frame only						
		AE = Resolver						
		CA = Incremental Encoder (Std)	4096 ррг					
		MA =Incremental Encoder	2048 ррг					
		EB = Optical Absolute Multi-turn	EQN 1325					
		FB = Optical Absolute Single turn	ECN 1313					
		RA = Optical SinCos Multi-turn	SRM 50					
		SA = Optical SinCos Single turn	SRS 50					

XX = Special

2.6 Dimensions


2.6.1 Frame size 075

4 holes ØR

(H14) equispaced

(H14) equispaced

 $\Delta t = 100 ^{\circ} C$ winding 40 $^{\circ} C$ maximum ambient All data subject to +/-10% tolerance

Fan box performance

N	lotor frame size (mm)	075U4			
	Voltage (Vrms)	380 - 480			
		Force - air cooling			
	Frame length	D			
Co	ntinuous stall torque (Nm)	5.2			
	Peak torque (Nm)	11.7			
	Standard inertia (kgcm²)	2.0			
	High inertia (kgcm²)				
Wind	ing thermal time const. (s)	100			
Speed 6000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =	0.80 49.00			
	Rated torque (Nm)	4.0			
	Stall current (A)	6.5			
	Rated power (kW)	2.51			
	R (ph-ph) (Ω)	1.90			
	L (ph-ph) (mH)	4.80			

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20°C ambient at 12kHz drive switching frequency

All other figures relate to a 20°C motor temperature. Maximum intermittent winding temperature is 140°C

Fan rating

Voltage	Free air flow	Fan curent rating
230 Vac	50 m³/h	0.05A

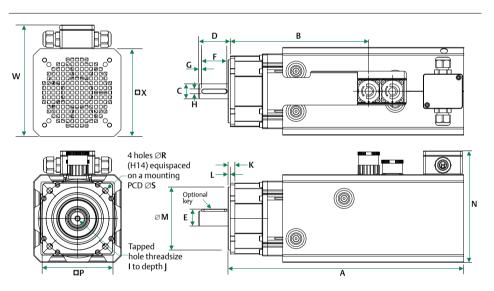
Drawing number: IM/0677/GA

Clearance behind fan box: 40mm

Fan blown motor dimension (mm)

		raked gth		ked gth	Flange thickness	Register length	Register diameter	Fan box overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Fan box housing	Mounting bolts
	A (± 5.0)	B (± 1.0)	A (± 5.0)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	W (± 3.0)	P (± 0.1)	R (H14)	S (± 0.4)	X (± 1.0)	
075D	397.4	247.2	442.4	292.2	5.8	2.40	60.0	121.6	70.0	5.8	75.0	91.6	M5

Connector height (mm)


Connection	Overall height
type	N (± 1.0)
Α	126.5
В	134.0
С	134.0
V	126.5

	Shaft	Shaft	Key	Key	Key to shaft	Key	Tapped hole	Tapped hole
	diameter	length	height	length	end	width	thread size	diameter
	C (j6)	D (± 0.45)	E (+0.009 / -0.134)	F (± 0.25)	G (± 1.1)	H (h9)	I	J (± 1.0)
19.0 D Std	19.0	40.0	21.5	32.0	3.6	6.0	M6 x 1.0	17.0

2.6.2 Frame size 095

 Δt = 100°C winding 40°C maximum ambient All data subject to +/-10% tolerance

Fan box performance

N	lotor frame size (mm)	095U4
	Voltage (Vrms)	380 - 480
		Force - air cooling
	Frame length	D
Co	ntinuous stall torque (Nm)	9.0
	Peak torque (Nm)	22.5
	Standard inertia (kgcm²)	5.1
	High inertia (kgcm²)	7.0
Wind	ing thermal time const. (s)	221
Speed 6000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =	0.80 49.00
	Rated torque (Nm)	5.8
	Stall current (A)	11.3
	Rated power (kW)	8.3
	R (ph-ph) (Ω)	0.62
	L (ph-ph) (mH)	2.70

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20°C ambient at 12kHz drive switching frequency

All other figures relate to a 20°C motor temperature. Maximum intermittent winding temperature is 140°C

Fan rating

Voltage	Free air flow	Fan curent rating
230 Vac	67 m³/h	0.05A

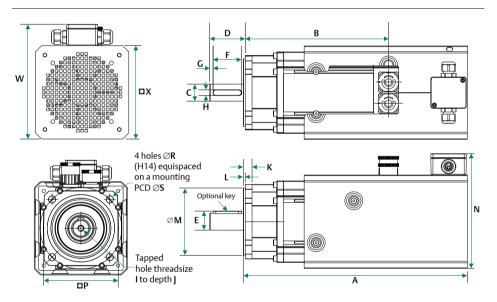
Drawing number: IM/0678/GA

Clearance behind fan box: 40mm

Fan blown motor dimension (mm)

		aked gth		ked gth	Flange thickness	Register length	Register diameter	Fan box overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Fan box housing	Mounting bolts
	A (± 5.0)	B (± 1.0)	A (± 5.0)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	W (± 3.0)	P (± 0.1)	R (H14)	S (± 0.4)	X (± 1.0)	
095D	386.6	265.9	431.6	310.9	5.9	2.80	80.0	141.6	90.0	7.0	100.0	111.6	M6

Connector height (mm)


Connection	Overall height				
type	N (± 1.0)				
Α	139.5				
В	147.0				
C	147.0				
V	139.5				

	Shaft	Shaft	Key	Key	Key to shaft	Key	Tapped hole	Tapped hole
	diameter	length	height	length	end	width	thread size	diameter
	C (j6)	D (± 0.45)	E (+0.009 / -0.134)	F (± 0.25)	G (± 1.1)	H (h9)	1	J (± 1.0)
22.0 D Std	22.0	50.0	24.5	40.0	4.6	6.0	M8 x 1.25	20.0

2.6.3 Frame size 115

 Δt = 100°C winding 40°C maximum ambient All data subject to +/-10% tolerance

Fan box performance

Moto	115	115U4		
	Voltage (Vrms)	380 - 480		
	Frame length	D	E	
Continu	ous stall torque (Nm)	15.2	20.1	
	Peak torque (Nm)	37.2	45.9	
Sta	11.4	13.8		
	16.6	18.9		
Winding t	hermal time const. (s)	217	241	
Speed 4000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =	1.2 73.		
	Rated torque (Nm)	12.0	16.1	
	Stall current (A)	12.7	16.8	
	Rated power (kW)	5.03	6.74	
	R (ph-ph) (Ω)			
	L (ph-ph) (mH)	4.70	3.90	

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20°C ambient at 12kHz drive switching frequency

All other figures relate to a 20°C motor temperature. Maximum intermittent winding temperature is 140°C

Fan rating

Voltage	Free air flow	Fan curent rating
230 Vac	160 m³/h	0.08A

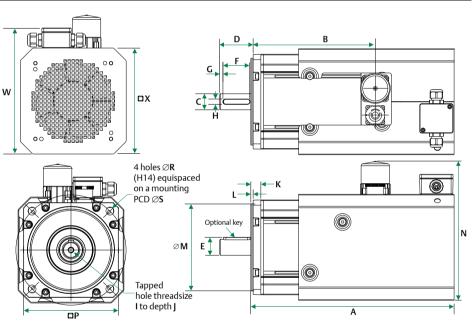
Drawing number: IM/0679/GA

Clearance behind fan box: 40mm

Fan blown motor dimension (mm)

	Unbr len			ked gth	Flange thickness	Register length	Register diameter	Fan box overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Fan box housing	Mounting bolts
	A (± 5.0)	B (± 1.0)	A (± 5.0)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	W (± 3.0)	P (± 0.1)	R (H14)	S (± 0.4)	X (± 2.0)	
115D	403.0	292.0	448.0	337.0	9.6	2.80	95.0	161.6	105.0	10.0	115.0	131.6	M8
115E	433.0	322.0	478.0	367.0	9.6	2.80	95.0	101.0	105.0	10.0	115.0	131.0	IVIO

Connector height (mm)


Connection	Overall height
type	N (± 1.0)
Α	157.0
В	164.5
С	164.5
V	157.0

	Shaft	Shaft	Key	Key	Key to shaft	Key	Tapped hole	Tapped hole
	diameter	length	height	length	end	width	thread size	diameter
	C (j6)	D (± 0.45)	E (+0.009 / -0.134)	F (± 0.25)	G (± 1.1)	H (h9)	1	J (± 1.0)
24.0 D Std	24.0	50.0	27.0	40.0	4.6	8.0	M8 x 1.25	20.0
28.0 E Std	28.0	60.0	31.0	50.0	4.6	8.0	M10 x 1.5	23.0

2.6.4 Frame size 142

 Δt = 100°C winding 40°C maximum ambient All data subject to +/-10% tolerance

Fan box performance

Motor	142U4			
	Voltage (Vrms)	380 -	-480	
	Frame length	C	E	
Continu	ous stall torque (Nm)	18.9	29.5	
	Peak torque (Nm)	45.9	70.2	
Sta	22.2	35.4		
	36.5	49.7		
Winding th	nermal time const. (s)	275	365	
Speed 3000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =	1.0 98.		
	Rated torque (Nm)	16.1	25.0	
	Stall current (A)	11.8	18.4	
	Rated power (kW)	5.06	7.85	
	R (ph-ph) (Ω)			
	L (ph-ph) (mH)	8.30	5.77	

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20°C ambient at 12kHz drive switching frequency

All other figures relate to a 20°C motor temperature. Maximum intermittent winding temperature is 140°C

Fan rating

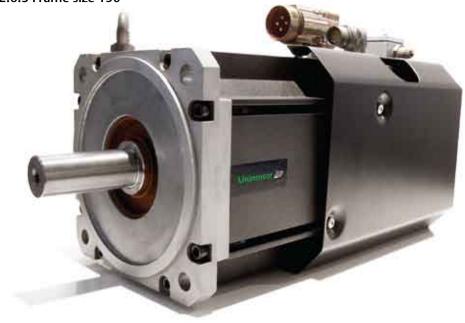
Voltage	Free air flow	Fan curent rating
230 Vac	160 m³/h	0.08A

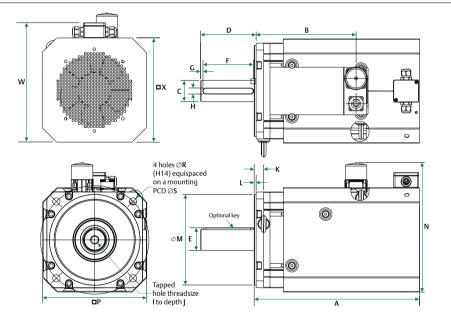
Drawing number: IM/0680/GA

Clearance behind fan box: 50mm

Fan blown motor dimension (mm)

	Unbr len			ked gth	Flange thickness	Register length	Register diameter	Fan box overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Fan box housing	Mounting bolts
	A (± 5.0)	B (± 1.0)	A (± 5.0)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	W (± 3.0)	P (± 0.1)	R (H14)	S (± 0.4)	X (± 2.0)	
142C	367.0	249.7	412.0	294.7	11.6	3.4	130.0	100 1	142.0	12.0	165.0	158.6	M10
142E	427.0	309.7	472.0	354.7	11.6	3.4	130.0	188.1	142.0	12.0	165.0	138.0	M10


Connector height (mm)


Connection	Overall height
type	N (± 1.0)
Α	184.0
В	191.5
C	191.5
V	184.0

	Shaft	Shaft	Key	Key	Key to shaft	Key	Tapped hole	Tapped hole
	diameter	length	height	length	end	width	thread size	diameter
	C (j6)	D (± 0.45)	E (+0.009 / -0.294)	F (± 0.25)	G (± 1.1)	H (h9)	I	J (± 1.0)
28.0 C/E Std	28.0	60.0	31.0	50.0	4.6	8.0	M10 x 1.5	23.0

2.6.5 Frame size 190

 Δt = 100°C winding 40°C maximum ambient All data subject to +/-10% tolerance

Fan box performance

Motor fra	me size (mm)	190U4			
	380 - 480				
		F	orce - ai cooling	г	
	Frame length	C	E	F	
Continuous s	tall torque (Nm)	41.0	68.0	79.0	
F	Peak torque (Nm)	93.3	151.6	176.2	
Standard	d inertia (kgcm²)	67.5	105.0	123.1	
High	n inertia (kgcm²)	112.7	150.2	168.3	
Winding therma	al time const. (s)	241	281	319	
Speed 2000 (rpm)	Speed 2000 (rpm) Kt $(Nm/A) = Ke (V/krpm) = Ke (V/krpm)$			2.40 147.0	
Ra	ted torque (Nm)			66.5	
	Stall current (A)			32.9	
R	ated current (A)			27.7	
Ra	ated power (kW)			13.9	
	R (ph-ph) (Ω)			0.30	
	L (ph-ph) (mH)			7.16	
Speed 3000 (rpm)	Kt (Nm/A) = Ke (V/krpm) =	1. 98	50 .00		
Ra	ted torque (Nm)	35.5	55.0		
	25.6	42.5			
Rated power (kW)		11.15	17.30		
	R (ph-ph) (Ω)	0.41	0.17		
	L (ph-ph) (mH)	7.35	3.86		

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20°C ambient at 12kHz drive switching frequency

All other figures relate to a 20°C motor temperature. Maximum intermittent winding temperature is 140°C

Fan rating

Voltage	Free air flow	Fan curent rating
230 Vac	325 m³/h	0.13A

Drawing number: IM/0681/GA

Clearance behind fan box: 60mm

Fan blown motor dimension (mm)

		Unbraked Braked length length			Flange thickness	Register length	Register diameter	Fan box overall height	Flange square	Fixing hole diameter	Fixing hole PCD	Fan box housing	Mounting bolts
	A (± 5.0)	B (± 1.0)	A (± 5.0)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	W (± 3.0)	P (± 0.1)	R (H14)	S (± 0.4)	X (± 2.0)	
190C	377.8	252.1	458.6	332.9									
190E	431.7	306.0	512.5	386.8	15.0	3.90	180.0	236.6	190.0	14.5	215.0	206.6	M12
190F	458.6	332.9	539.5	413.8									

Connector height (mm)

Connection	Overall height
type	N (± 1.0)
Α	253.0
В	260.5
С	260.5
V	240.0

	Shaft	Shaft	Key	Key	Key to shaft	Key	Tapped hole	Tapped hole
	diameter	length	height	length	end	width	thread size	diameter
	C (j6)	D (± 0.45)	E (+0.018 / -0.288)	F (± 0.25)	G (± 1.1)	H (h9)	1	J (± 1.0)
32.0 C Std	32.0 (k6)	80.0	35.0	70.0	4.6	10.0	M12 x 1.75	29.0
38.0 E/F Std	38.0 (k6)	80.0	41.0	70.0	4.6	10.0	M12 x 1.75	29.0

3 Introduction to Unimotor hd

3.1 Overview

Unimotor is Control Techniques' new high dynamic brushless AC servo motor range, designed for operation with Digitax ST, Unidrive SP and Epsilon EP drives. Unimotor provides an exceptionally compact, low inertia solution for applications where very high torque is required during rapid acceleration and deceleration profiles. The Unimotor by torque profile is matched to Digitax ST servo drives, providing up to 300% peak overload for maximum dynamic performance.

3.1.1 Engineering excellence, innovation and reliability

Unimotor has been developed by a dedicated team using our design process that prioritises product innovation, performance and reliability. This enables new ideas to be quickly evaluated, prototyped and tested using a suite of in-house development and modelling software tools. As a result Unimotor incorporates a number of unique performance enhancing design features with several patents pending. Unimotor "raises the bar" in terms of both performance and quality.

3.1.2 Key features

Unimotor is suitable for a wide range of industrial applications, due to its extensive features.

- → Torque range: 0.72Nm to 18.8Nm
- High torque to inertia ratio for high dynamic performance
- Compact but powerful
- High energy dissipation brakes
- IP65 conformance: sealed against water spray and dust when mounted and connected
- Segmented stator design
- World class performance

067UDC300 + DST1402 067UDA300 + DST1401 055UDC300 + DST1401 055UDA300 + DST1401

- Supported by rigorous testing for performance and reliability
- Winding to suit 400V and 220V
- Rated speeds include 2000rpm, 3000rpm, 4000rpm and 6000rpm
- Larger shafts to increase torsional rigidity

3.1.3 The ultimate motor and drive combinations

Control Techniques drive and motor combinations provide an optimised system in terms of ratings, performance, cost and ease of use. Unimotor motors fitted with high resolution SinCos or Absolute encoders are pre-loaded with the motor "electronic nameplate" data during the manufacturing process. This data can be read by Control Techniques' servo drives and used to automatically optimise the drive settings. This feature simplifies commissioning and maintenance, ensures consistent performance and saves time.

For further information on Control Techniques servo drives, please refer to the Digitax ST and Unidrive SP brochures.

3.1.4 Accuracy and resolution to suit your application requirements

Choosing the right feedback device for your application is critical in getting optimum performance. Unimotor has a range of feedback options that offer different levels of accuracy and resolution to suit most applications:

- Resolver: robust for extreme applications and conditions - low accuracy, medium resolution
- Incremental encoder: high accuracy, medium resolution
- Inductive Absolute: medium accuracy, medium resolution, single turn and multi-turn
- → Optical SinCos/Absolute: high accuracy, high resolution, single turn and multi-turn
- → Hiperface (SICK) and EnDAT (Heidenhain) protocols supported

3.1.5 Torque performance ■ Stall torque ■ Peak torque (3000 rpm) 115UDC300 + DST1405 115UDB300 + DST1405 089UDC300 + DST1404 089UDB300 + DST1403 089UDA300 + DST1402

10

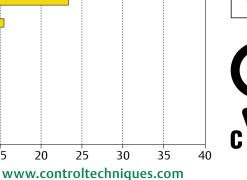
15

20

25

30

35


3.1.6 Conformance and standards

3.2 Unimotor Wordering code Information

Use the information below in the illustration to create an order code for a Unimotor **.....**. The details in the band are an example of an order reference.

089 UD B 30				F	D	Δ.	CA		Δ.
089	UD	В	30	5	В	Α	CA		Α
Frame size	Motor voltage	Stator length	Rated speed	Brake (24V)	Connection type	Output shaft	Feedback devic	e	Inertia
		055-089 frame	055-067 frame	055 frame			055-067 frame	2	
055	ED = 220V	Α	30 = 3000 rpm	0 = Not fitted (Std)	B = Power and	A = Keyed	AR = Resolver		A = Standar
067	UD = 400V	В	60 = 6000 rpm	1 = Parking brake	Signal 90° rotatable	B = Plain	CR = Incremental Encoder (Renco)	4096 ppr (R35i)	
089		C	089 frame	X = Special		shaft	EM = Inductive Absolute Multi turn	EQI 1130	
115		115 frame	30 = 3000 rpm	067–115 Frame			FM = Inductive Absolute Single turn	ECI 1118	
	B 40 = 4000 rpm			0 = Not fitted (Std)			XX = Special		
C 60 = 6000 rpr			60 = 6000 rpm	5 = High energy dissipation			089 frame		
		D	115 frame	parking brake			AE = Resolver		
20 = 2000 r				X = Special			CA = Incremental Encoder (SICK)	4096 ppr (CFS50)	
			30 = 3000 rpm				CR = Incremental Encoder (Renco)	4096 ppr (R35i)	
							EB = Optical Absolute Multi turn	EQN 1325	
							FB = Optical Absolute Single turn	ECN 1313	
			2570000				EC = Inductive Absolute Multi turn	EQI 1331	
			100 m				FC = Inductive Absolute Single turn	ECI 1319	
			and the same				RA = Optical Sincos Multi turn	SRM 50 (GEN 2)	
							SA = Optical Sincos Single turn	SRS 50 (GEN 2)	
							XX = Special		
			::				115 Frame		
			-				AE = Resolver		
			-				4096 ppr (CFS50)		
							EB = Optical Absolute Multi turn	EQN 1325	
							FB = Optical Absolute Single turn	ECN 1313	
				2.0			EC = Inductive Absolute Multi turn	EQI 1331	
L.		1	3				FC = Inductive Absolute Single turn	ECI 1319	
							SRM 50 (GEN 2)		
UB	3	100	3				SA = Optical Sincos Single turn	SRS 50 (GEN 2)	
1		1		00,	-		XX = Special		

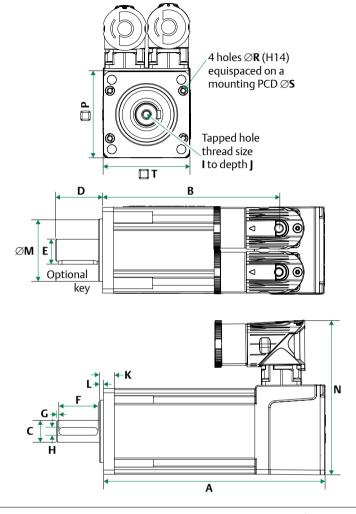
3.3 Quick reference table

Frame size	PCD (mm)				Unimo	tor 🕮				Page No.
055	63		0.72							4
067	75			1.45 0.30 0.7	3.70 75					5
089	100				3.20 0.87	2.34				6
115	130						4.41	10.2	18.80 8.38	7
Stall	0	0.5	1.0	3.0	5.0	8.0	10.0	15.0	20.0	(Nm)
Inertia	0	0.1	0.2	0.7	1.5	2.5	6.5	8.0	9.0	(kgcm²)

3.4 Dimensions

3.4.1 Frame size 055 For 3 Phase VPWM drives

Motor frame size (mm)		055ED			055UD	
Voltage (Vrms)	2	200-24	0	3	380-480)
Frame length	Α	В	C	Α	В	C
Continuous Stall Torque (Nm)	0.72	1.18	1.65	0.72	1.18	1.65
Peak Torque (Nm)	2.88	4.72	6.60	2.88	4.72	6.60
Inertia (kgcm²)	0.14	0.25	0.36	0.14	0.25	0.36
Winding thermal time constant (s)	34.0	38.0	42.0	34.0	38.0	42.0
Motor weight unbraked (kg)	1.20	1.50	1.80	1.20	1.50	1.80
Motor weight braked (kg)	1.60	1.90	2.20	1.6	1.90	2.20
Number of poles	8	8	8	8	8	8
Speed 3000 (rpm) $Kt (Nm/A) = Ke (V/krpm) = Ke (V/krpm)$	0.74 45.00	0.87 52.50	0.91 55.00	0.74 45.00	1.49 90.00	1.65 100.00
Rated torque (Nm)	0.70	1.05	1.48	0.70	1.05	1.48
Stall current (A)	0.97	1.36	1.81	0.97	0.79	1.00
Rated power (kW)	0.22	0.33	0.46	0.22	0.33	0.46
R (ph-ph) (Ω)	28.00	14.12	9.53	28.00	45.00	31.00
L (ph-ph) (mH)	50.00	32.00	23.00	50.00	100.00	75.00
Speed 6000 (rpm) $\frac{\text{Kt (Nm/A)}}{\text{Ke (V/krpm)}} =$	0.45 27.00	0.43 26.00	0.48 29.00	0.74 45.00	0.79 47.50	0.83 50.00
Rated torque (Nm)	0.68	0.90	1.20	0.68	0.90	1.20
Stall current (A)	1.61	2.74	3.44	0.97	1.49	1.99
Rated power (kW)	0.43	0.57	0.75	0.43	0.57	0.75
R (ph-ph) (Ω)	8.50	3.55	2.38	28.00	10.70	7.80
L (ph-ph) (mH)	16.00	8.20	6.30	50.00	25.00	20.00


Δt = 100°C winding 40°C maximum ambient

All data subject to +/-10% tolerance

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20°C ambient at 12kHz drive switching frequency

All other figures relate to a 20 $^{\circ}\text{C}$ motor temperature.

Maximum intermittent winding temperature is 140 $^{\circ}\text{C}$

Motor dimension (mm)

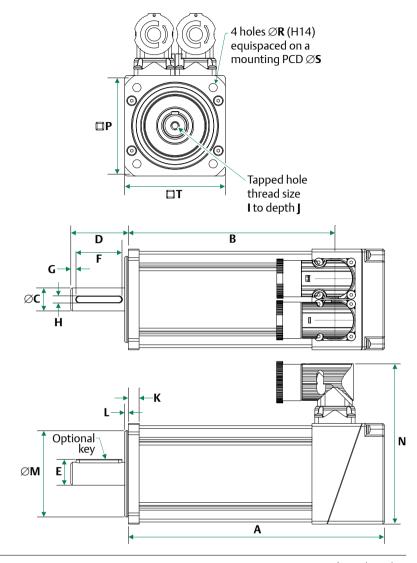
Drawing number: GM496400

	Fe	eedback AR	R, CR, EM/F	М	Flange	Register	Register	Overall	Flange	Fixing hole	Fixing hole	Motor	Mounting
	Unbrake	d length	Braked	length	thickness	length	diameter	height	square	diameter	PCD	housing	bolts
	Α	В	Α	В	K	L	M (j6)	N	Р	R (H14)	S	T	
055A	118.0	90.0	158.0	130.0									
055B	142.0	114.0	182.0	154.0	7.0	2.5	40.0	99.0	55.0	5.8	63.0	55.0	M5
055C	166.0	138.0	206.0	178.0									

Shaft dimensions (mm)

	Shaft diameter	Shaft length	Key height	Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth
	C (j6)	D	E	F	G	H (h9)	1	J
14.0 Std	14	30.0	16.0	25.0	1.5	5.0	M5	12.5

3.4.2 Frame size 067 For 3 Phase VPWM drives


Motor frame size (mm)	067ED			067UD	
Voltage (Vrms) 2	200-24	0	3	380-480)
Frame lengt	n A	В	C	Α	В	C
Continuous Stall Torque (Nm	1.45	2.55	3.70	1.45	2.55	3.70
Peak Torque (Nm	4.35	7.65	11.10	4.35	7.65	11.10
Inertia (kgcm²	0.30	0.53	0.75	0.30	0.53	0.75
Winding thermal time constant (s) 54	61	65	54	61	65
Motor weight unbraked (kg	2.00	2.60	3.20	2.00	2.60	3.20
Motor weight braked (kg	2.70	3.3	3.90	2.70	3.3	3.90
Number of pole	s 10	10	10	10	10	10
Speed 3000 (rpm) $Kt (Nm/A)$ Ke (V/krpm)		0.93 57.00		0.80 49.00	1.60 98.00	1.60 98.00
Rated torque (Nm	1.40	2.45	3.50	1.40	2.45	3.50
Stall current (A	1.56	2.74	3.98	1.81	1.59	2.31
Rated power (kW	0.44	0.77	1.10	0.44	0.77	1.10
R (ph-ph) (Ω	14.92	4.88	3.33	11.69	15.20	10.70
L (ph-ph) (mH	45.43	17.40	12.70	35.18	54.20	40.80
Speed 6000 (rpm) $\begin{array}{c} Kt (Nm/A) \\ Ke (V/krpm) \end{array}$		0.47 28.50			0.8 49.00	
Rated torque (Nm	1.30	2.20		1.30	2.20	3.10
Stall current (A	3.12	5.48		1.81	3.19	4.63
Rated power (kW	0.82	1.38		0.82	1.38	1.95
R (ph-ph) (Ω	3.86	1.22		11.69	3.79	2.68
L (ph-ph) (mH	11.06	4.35		35.18	13.60	10.20

Δt = 100°C winding 40°C maximum ambient All data subject to +/-10% tolerance

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20° C ambient at 12kHz drive switching frequency

All other figures relate to a 20°C motor temperature.

Maximum intermittent winding temperature is 140°C

Motor dimension (mm)

Drawingnumber:IM/0694/GA

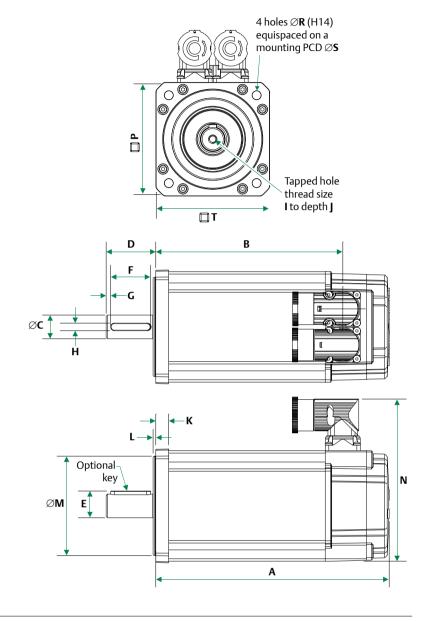
	Fee	edback AR	, CR, EM/	FM	Flange	Register	Register	Overall	Flange	Fixing hole	Fixing hole	Motor	Mounting
	Unbrake	d length	Braked	length	thickness	length	diameter	height	square	diameter	PCD	housing	bolts
	A (± 1.1)	B (± 1.0)	A (± 1.1)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	N (± 0.3)	P (± 0.3)	R (H14)	S (± 0.4)	T (± 0.4)	
067A	142.7	108.8	177.7	143.8									
067B	172.7	138.8	207.7	173.8	7.5	2.50	60.0	111.5	70.0	5.8	75.0	67.00	M5
067C	202.7	168.8	237.7	203.8									

Shaft dimensions (mm)

	Shaft	Shaft	Key	Key	Key to	Key	Tapped hole	Tapped hole
	diameter	length	height	length	shaft end	width	thread size	depth
	C (j6)	D (± 0.45)	E (+0.0 / -0.13)	F (± 0.25)	G (± 1.1)	H (h9)	I	J (± 1.0)
14.0 Std	14.0	30.0	16.0	22.0	3.6	5.0	M5 x 0.8	13.5

3.4.3 Frame size 089 For 3 Phase VPWM drives

Motor frame size (mn	1)	089ED			089UD	ı
Voltage (Vrm	5) 2	200-24	0	3	880-480	C
Frame lengt	h A	В	C	Α	В	C
Continuous Stall Torque (Nr	3.20	5.50	8.00	3.20	5.50	8.00
Peak Torque (Nr	9.60	16.50	24.00	9.60	16.50	24.00
Inertia (kgcm	2) 0.87	1.61	2.34	0.87	1.61	2.34
Winding thermal time constant (s) 85	93	98	85	93	98
Motor weight unbraked (k	3.30	4.40	5.50	3.30	4.40	5.50
Motor weight braked (k) 4.30	5.40	6.50	4.30	5.40	6.50
Number of pol	es 10	10	10	10	10	10
Speed 3000 (rpm) Kt (Nm/A) Ke (V/krpm)		0.93 57.00			1.60 98.00	
Rated torque (Nr	3.00	4.85	6.90	3.00	4.85	6.90
Stall current (A	3.44	5.91	8.60	2.00	3.44	5.00
Rated power (kV	0.94	1.52	2.17	0.94	1.52	2.17
R (ph-ph) (s	2) 3.28	1.57	0.89	10.10	5.05	2.68
L (ph-ph) (ml	1) 21.55	11.84	7.09	65.17	38.36	21.72
Speed 4000 (rpm) $\frac{\text{Kt (Nm/A)}}{\text{Ke (V/krpm)}}$		0.70 42.75			1.2 73.50	
Rated torque (Nr	2.90	4.55	6.35	2.90	4.55	6.35
Stall current (4.57	7.86	11.43	2.67	4.58	6.67
Rated power (kV	/) 1.21	1.91	2.66	1.21	1.91	2.66
R (ph-ph) (2.04	0.79	0.54	6.16	2.47	1.75
L (ph-ph) (ml	1) 13.20	5.97	4.38	39.78	18.80	14.03
Speed 6000 (rpm) Kt (Nm/A) Ke (V/krpm)		0.47 28.50			0.8 49.00	
Rated torque (Nr	2.65	3.80	5.00	2.65	3.80	5.00
Stall current (6.88	11.83	17.20	4.00	6.88	10.00
Rated power (kV	/) 1.67	2.39	3.14	1.67	2.39	3.14
R (ph-ph) (s	0.98	0.39	0.23	2.52	1.27	0.83
L (ph-ph) (ml	6.24	2.96	1.89	16.29	9.59	6.66


Δt = 100°C winding 40°C maximum ambient

All data subject to +/-10% tolerance

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20°C ambient at 12kHz drive switching frequency

All other figures relate to a 20°C motor temperature.

Maximum intermittent winding temperature is 140°C

Motor dimension (mm)

Drawingnumber:IM/0688/GA

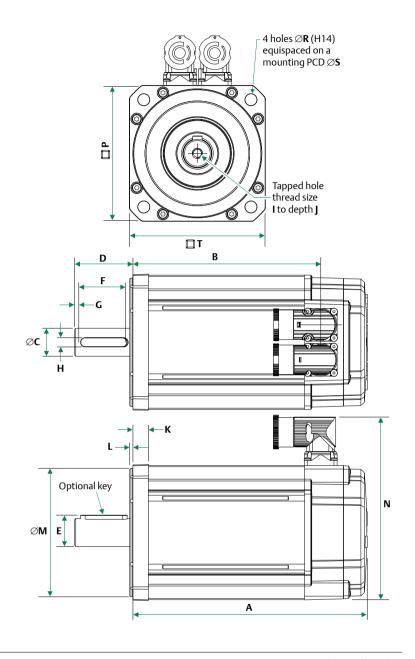
	Feedback EC / FC			Flange	Register	Register	Overall	Flange	Fixing hole	Fixing hole	Motor	Mounting	
	Unbraked length		Braked length		thickness le	length	ngth diameter	height	square	diameter	PCD	housing	bolts
	A (± 0.9)	B (± 1.0)	A (± 0.9)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	N (± 1.0)	P (± 0.28)	R (H14)	S (± 0.4)	T (± 0.7)	
089A	147.8	110.5	187.9	150.6	10.3	2.20	80.0	130.5	91.0	7.00	100.0	89.0	M6
089B	177.8	140.5	217.9	180.6									
089C	207.8	170.5	247.9	210.6									

	Feed FB, EB/C		Feedback AE/CR			
	Unbraked length	Braked length	Unbraked length	Braked length		
	A (± 0.9)	A (± 0.9)	A (± 0.9)	A (± 0.9)		
089A	160.8	200.9	137.8	177.9		
089B	190.8	230.9	167.8	207.9		
089C	220.8	260.9	197.8	237.9		

Shaft dimensions (mm)

	Shaft diameter	Shaft Key length height		Key length	Key to shaft end	Key width	Tapped hole thread size	Tapped hole depth	
	C (j6)	D (± 0.45)	E (+ 0.009 / -0.134)	F (± 0.25)	G (± 1.1)	H (h9)	1	J (± 1.0)	
19.0 Std	19.0	40.0	21.5	32.0	3.7	6.0	M6 x 1.0	17.0	

3.4.4 Frame size 115 For 3 Phase VPWM drives


Motor frame size (m	115ED				115UD				
Voltage (Vr	ms)	2	200-240)		3	380-480	80-480	
Frame len	В	C	D		В	C	D		
Continuous Stall Torque (N	10.20	14.60	18.80		10.20	14.60	18.80		
Peak Torque (N	Vm)	30.60	43.80	56.40		30.60	43.80	56.40	
Inertia (kgc	:m²)	4.41	6.39	8.38		4.41	6.39	8.38	
Winding thermal time constan	t(s)	164	168	175		164	168	175	
Motor weight unbraked	(kg)	7.20	8.90	10.70		7.20	8.90	10.70	
Motor weight braked	(kg)	8.70	10.40	12.20		8.70	10.40	12.20	
Number of p	oles	10	10	10		10	10	10	
Speed 2000 (rpm) \ \ \	Speed 2000 (rpm) $Kt (Nm/A) = Ke (V/krpm) =$					2.4 147.00			
Rated torque (N	Nm)	8.60	11.90	15.60		8.60	11.90	15.60	
Stall current	(A)	7.29	10.43	13.43		4.25	6.08	7.83	
Rated power (I	kW)	1.80	2.49	3.27		1.80	2.49	3.27	
R (ph-ph)	(Ω)	1.40	0.77	0.61		4.41	2.41	1.80	
L (ph-ph) (r	nH)	12.84	7.87	6.62		40.59	24.69	19.45	
Speed 3000 (rpm) Kt (Nm/. Ke (V/krpr	,		0.93 57.00				1.60 98.00		
Rated torque (N	Rated torque (Nm)		10.50			7.70	10.50	13.60	
Stall current	Stall current (A)		15.70			6.38	9.13	11.75	
Rated power (2.42	3.30			2.42	3.30	4.27		
R (ph-ph)	(Ω)	0.58	0.39			1.83	1.21	0.78	
L (ph-ph) (r	nH)	5.40	4.01			16.93	12.72	8.65	

Δt = 100°C winding 40°C maximum ambient All data subject to +/-10% tolerance

Stall torque, rated torque and power relate to maximum continuous operation tested in a 20°C ambient at 12kHz drive switching frequency

All other figures relate to a 20°C motor temperature.

Maximum intermittent winding temperature is 140°C

Motor dimension (mm)

Drawingnumber:IM/0689/GA

	Feedback EC/FC		Flange thick-	Register	Register	Overall	Flange	Fixing hole	Fixing hole	Motor hous-	Mounting		
	Unbrake	d length	Braked	length	ness	length	diameter	height	square	diameter	PCD	ing	bolts
	A (± 0.9)	B (± 1.0)	A (± 0.9)	B (± 1.0)	K (± 0.5)	L (± 0.1)	M (j6)	N (± 1.0)	P (± 0.31)	R (H14)	S (± 0.4)	T (± 0.7)	
115B	193.8	154.0	230.9	191.1									
115C	223.8	184.0	260.9	221.1	13.2	2.70	110.0	156.5	116.0	10.00	130.0	115.0	M8
115D	253.8	214.0	290.9	251.1									

	Feed FB, EB/C		Feedback AE			
	Unbraked length	Braked length	Unbraked length	Braked length		
	A (± 0.9)	A (± 0.9)	A (± 0.9)	A (± 0.9)		
115B	206.8	243.9	183.8	220.9		
115C	236.8	273.9	213.8	250.9		
115D	266.8	303.9	243.8	280.9		

Shaft dimensions (mm)

	Shaft	Shaft	Key	Key	Key to	Key	Tapped hole	Tapped hole
	diameter	length	height	length	shaft end	width	thread size	depth
	C (j6)	D (± 0.45)	E (+0.009 / -0.294)	F (± 0.25)	G (± 1.1)	H (h9)	1	J (± 1.0)
24.0 Std	24.0	50.0	27.0	40.0	5.3	8.0	M8 x 1.25	20.0

NOTE: 3D drawings of the Unimotor fm and Unimotor hd motors can be downloaded from: http://motors.controltechniques.com/

4 Generic information

4.1 Performance definitions

Stall	toro	ıue

This is the maximum torque within the continuous zone at zero speed.

Maximum continuous torque ratings may be intermittently exceeded for short periods provided that the winding Δt max temperature is not exceeded.

 Δt max = 100°C over a maximum ambient of 40°C for Unimotor fm.

.

Stall current Stall current = Stall torque / kt

Motor label and performance tables quote stall current when motor is at full power in a maximum ambient of 40°C.

Rated speed

This is the maximum speed of the motor within the continuous zone. The motor speed can be controlled to any speed subject to the voltage limits and drive constraints as shown by the intermittent zone on the graph (see speed limits).

Ke voltage constant

This is the phase to phase rms voltage generated at the stator when the shaft is back driven at 1000rpm with the rotor at 20°C.

Kt torque constant

A brushless motor delivers torque proportional to the current, such that torque = kt x current.

Where kt = 0.0165 x ke (at 20° C).

Magnets used on all motors are affected by temperature such that ke and kt reduce with increasing temperatures of the magnets. The reductions depends upon the magnet type and material grade used.

Winding thermal time constant

The thermal time constant of the winding with respect to the stator temperature as a reference in the exponential temperature rise given by the formulae:-

Winding temperature at time t seconds = T0+T1(1-e-t/tc)

Where **T0** is the initial temperature, **T1** is the final winding temperature and tc = thermal time constant (seconds)

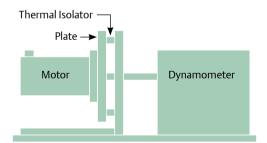
Note that temperature = 63.2% of T1 when t=tc

A thermal protection trip is provided by the drive, based upon calculations using elapsed time, current measurement, and the parameter settings set by the user or directly from the motor map.

Unimotor fm's windings are ultimately protected by thermistor devices in the winding overhangs. These must be connected to the appropriate drive inputs via the motor feedback signal connector.

Rated power

This is the product of the rated speed (radian/sec) and the rated torque (Nm) expressed in Watts (W).


Δt temperature

At temperature is the temperature difference between the copper wires of the motor winding and the ambient air temperature surrounding the motor.

The maximum Δt temperature permitted is 100°C over a maximum ambient of 40°C.

(i.e. a maximum winding temperature of 140°C)

4.2 Thermal test conditions

Motor type/frame	Aluminium heatsink plate
055	110 x 110 x 27mm
067-095	250 x 250 x 15mm
115-142	350 x 350 x 20mm
190	500 x 500 x 20mm
250	500 x 500 x 20mm

The performance data shown has been recorded under the following conditions: Ambient temperature 20°C, with the motor mounted on a thermally isolated aluminum plate as shown below.

Thermal protection

Thermistor protection (145° C) is built into the motor windings and gives an indication of serious overheating problems. The installer must connect the thermistor to the drive. Failure to do so will invalidate the motor warranty in respect of a burnt out winding.

Environmental conditions

Any liquids or gases that may come into contact with the motor must be checked to ensure compliance with the appropriate international standards.

4.3 Nameplate

4.3.1 Unimotor fm

Model	This is the full part number of the fm motor.	IP RATING	Ingress protection rating =
MNFRD	This is the date that the motor was manufactured.		(excludes the front shaft se
MNF NO	This is the works order for the motor.	RATED TORQUE	This is the continuous torqu
SERIAL	This is the serial number of the motor.	MAX SPEED	The max speed shown will three factors:
STALL	This is the full motor stall torque at the stall current.		1. Maximum drive voltage.
SPEED	This is the rated speed of the motor.		2. Maximum encoder spee
Ke	This is the AC volts per 1000rpm with the motor at 20°C.		3. Maximum mechanical sp
Kt	Value shown is for the motor magnet temperature at 20°C.		The max speed is not to be
BRAKE	This gives the current, the rated torque and the operating	TCW	This is the thermal time correspect to the stator temporary
	voltage if the brake is fitted.	RATED POWER	This is the rated power of th
	N/A if the brake is not fitted.	DRIVE VPWM	This indicates that the mot
F/B	This gives the feedback device count and working voltage, or the feedback type.	DRIVE VI VVIVI	Width Modulation drive wi
INSUL	Winding are built to class F standard (155°C).	ϵ	CE (Conformite Europeenn incorporation is contained
POLES	Number of poles:		Installation Guide that acco
	 → 075 to 142 have 6 poles = 3 pole pairs → 055 and 190 have 8 poles = 4 pole pairs → 250 have 10 poles = 5 pole pairs 	c AL °us	The UL symbol together wi indicates full motor recogn Laboratory (UL) in USA and
ANADTENAD /	AT) This is the ambient temperature range / (delta) winding		Authority (CSA) in Canada.

AMBTEMP (ΔT) This is the ambient temperature range / (delta) winding temperature increase above ambient (at full rating).

= IP65S seal).

ue at full rated speed.

II be the lowest one of these

- e.
- ed.
- speed.

e considered for field weakening.

onstant of the windings with perature.

the motor.

otor is for use with a Voltage Pulse vith a supply voltage as shown.

> nne) mark. A declaration of d within the Unimotor fm companies each motor.

with the "E215243" file number nition by Underwriters nd by Canadian Standards

4.3.2 Unimotor hd

F/B	The feedback device count and working voltage or the feedback type.
MNF NO	The CTD works order for the motor.
SN/MNFRD	The serial number / the date that the motor was manufactured.
IP65	Motor index of protection.
MCS	The Constant Stall Torque @ the Stall current.
MN	The Rated Torque.
Ke	This is the AC Volts per 1000rpm with the motor at 20 °C.
Kt	Value shown is for the motor magnet temperature at 20° C.

ICS	The Constant stall current at the maximum winding temperature of 140 °C.
PN	The rated power.
nN /max	The rated speed / This is the maximum speed allowed when taking into account these three factors:-
	 Maximum drive voltage. Maximum encoder speed. Maximum mechanical speed.
DRIVE	This indicates that the motor is for use with a Voltage Pulse Width Modulated drive with the supply voltage shown.
BRAKE	The current, the rated torque and the operation voltage for the brake or N/A if the brake is not fitted.

4.4 Motor selection

A reliable servo system depends upon the initial system design and correct selection of the motor, feedback, gearbox and drive. To ensure success careful attention should be paid to the following points:

- → Speed, acceleration and inertia
- → Peak and rms torque
- → Motor feedback type
- → Gear ratios
- Drive system operational mode
- → Thermal effects
- → Environmental conditions
- → Mechanical restrictions
- Cost of motor-drive combination

It is necessary to estimate the root mean square (rms) torque value of the load. Where the motor has varying duty cycles it may be necessary to consider the worst case only.

Never exceed the maximum peak torque ratings.

Calculate the rms load torque at the motor and ensure that this is less than the motor rated torque. An additional allowance should be made on the load for inefficiencies and tolerance.

Choose a suitable motor within the size limitations of the installation. The frame size and motor speed may be selected using the performance data. Look for the rated torque at the appropriate temperature.

4.5 Checklist of operating details

Complete this checklist to help select which Unimotor fm best suits your application requirements.

Torque speed

- → What motor operating speed do you require (rpm)?
 - → 500
 - → 1000
 - → 2000
 - → 3000
 - **→** 4000
 - → 6000
 - → Other (non standard speed)
- → What is the rms torque?

Decide on switching frequencies for the drive, and derate motor or drive accordingly

- → If the ambient temperature is above 40°C, apply a derating factor. If the motor is mounted to a hot interface; or interfaced with a low thermal mass; or high thermal resistance; apply a derating factor. Torque ratings of motors are stated in controlled conditions mounted on a reference front plate. Details can be found in the Performance data selection
- → Inertia mismatch (ratio of the motor inertia to load inertia reflected to motor shaft) can be as high as 3:1 for acceleration rates of 1000 rad/s² for a typical system. Larger mismatches or acceleration can be tolerated with a rigid mechanical system and high resolution feedback
- → Do you require a brake?

Motor mounting

- Does the motor fit the machine?
 Make allowances for cables and connections.
- → Do you require an output key?
 - → Output key
 - → Plain shaft

NB. When a gearbox is fitted, this choice applies to the gearbox o/p shaft, as supplied by Control Techniques Dynamics.

Feedback

- → Do you want an encoder or resolver?
 - → Incremental
 - → SinCos Multi turn
 - → SICK Hiperface
 - → Heidenhain EnDat
 - → Inductive absolute
 - → High accuracy
 - → SinCos Single turn
 - → SICK Hiperface
 - → Heidenhain EnDat
 - → Inductive
 - → High accuracy
 - → Resolver

Electrical connections

- Connectors
 - → Power and Signal 90° fixed
 - → Power and Signal 90° rotatable
 - → Power 90° rotatable and Signal vertical
 - → Power and Signal vertical

Other options

- → Do you require a gearbox?
 - → Yes
 - → No
- → Many other customer special motors are made by Control Techniques Dynamics Limited. For further details, contact us.

4.6 Points to consider

Torque and temperature

- → The maximum allowable temperature of the motor windings or feedback device should not be exceeded. The windings have a thermal time constant ranging from 90 seconds to over an hour. Dependent upon motor temperature the motor can be overdriven for shorter periods without exceeding the temperature limitations. The motor winding thermal time constant should be set-up in the drive; this parameter is used for thermal shock (I²t) calculations within the drive
- → The motor winding thermal time constant should be large in comparison with the medium term periods of high rms torque
- Ensure that the drive's features, such as switching frequency, waveforms, peak and continuous currents are suitable for the application. Low switching frequencies of the drive will require motor derating
- → Torque estimates should include friction and acceleration (and hence inertia) calculations
- → Consider the motor cooling effects; for example, is the conductive thermal path adequate? Is the motor mounted on a gearbox or heat source?
- → Ensure that the motor and drive can meet the short term peak torque requirements

Braking

→ The installation may require static parking brake

Inertia

→ Ensure that the motor has correct inertia matching to suit the acceleration requirements. Consider inertia load matching especially for acceleration levels above 1000 rad/s². Motors with larger frame diameters have higher inertia. Higher inertia rotor options are available

Environmental conditions

 Other environmental factors, such as vibration, pressure, shock,heat and hazardous zones should be considered

Cables

- → The cable lengths required for the installation should be considered. For maximum cable length, see *Maximum cable length* in the *Cable* section. Compliance with both Safety and EMC regulations should be ensured
- → Ensure motor is mounted firmly and properly earthed. Screen all cables to reduce system noise and EMC

Feedback

- → To achieve an efficient system it is necessary to ensure stiff mechanical connections and couplings to all rotating parts, so that a high servo bandwidth can be achieved. This will improve stability and enable higher servo gains to be set, ensuring higher accuracy and positional repeatability
- → High resolution feedbacks will increase stability and allow greater acceleration or inertia mismatch

Bearing loads

 Check the radial and axial loadings are within the limits of the motor

4.7 Special motor requests

Control Techniques Dynamics offer many "special" motors. These motors are designed to meet a specific customer's requirements.

Special motors are denoted by a code on the end of the part number. S*** 3 or 4 digits; e.g. 115U2E100BACAA115240-SON (special coating)

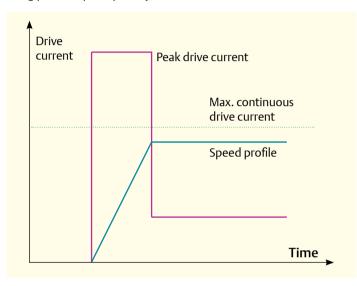
To request a "special" motor please contact CTDynamics Technical Support with the customer requirements. A product enquiry form will be raised and R&D/Engineering will investigate the feasibility of the request. If acceptable then a "special" part number reference will be allocated to the motor and a quote will be issued.

Once an order is placed a Product Approval Schedule (PAS) form will be raised and sent to the Drive Centre for approval.

Special motors can include:

- → Special paint finishes or unpainted motors
- Special motors with customer specific connector wiring
- → Special motors with customer specific brakes
- → Special motors with customer specific shaft dimension
- Special motors for harsh environments motors

4.8 Calculating load torque


In any application, the load consists of various torque loads plus acceleration and decelerations of inertia.

Constant torque periods

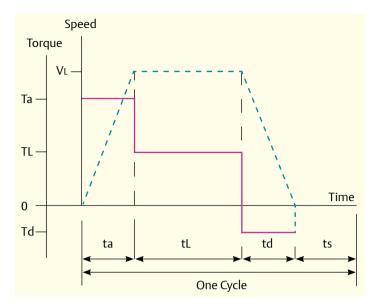
Periods where a torque is maintained at constant or near constant motor speeds.

Acceleration and deceleration

Torque is required to achieve acceleration and deceleration. Acceleration times of less than one second can often be achieved using peak torque capability of the drive and motor.

Note

Peak drive current may be set by drive control to the motors continuous current rating. If this is required, check that it is within the drives capability. Medium periods of up to 200% over current are often acceptable for the motor, provided that the heating effects are not too rapid and that the motor thermal time constant is long in comparison.


Inertia formula and accelerating or decelerating torques:

Inertial loads on a common shaft may be added together. Inertial loads may be reflected from the output of a reduction gearbox to the motor by dividing the output ratio by the square of the ratio.

Total inertia = reflected inertial load at motor + motor inertia

rms torque for a repetitive duty cycle:

Draw a graph of torque (T) against time for one complete repetitive cycle of events (or choose the worst case of various events). Make the torque axis vertical. On the same graph, draw the speed profile against time for one cycle.

From the above speed-torque diagram calculate the rms torque using the formula:

Trms =
$$\sqrt{\frac{Ta^2 \times ta + TL^2 \times tL + Td^2 \times td \times Ts^2 \times ts}{ta + tL + td + ts}}$$

Where:

Ta = Acceleration Torque (Nm)

tL = On load running time (s)

TL = Load torque (Nm)

td = Deceleration time (s)

Td = Deceleration torque (Nm)

ts = Dwell time (s)

ta = Acceleration Time (s)

VL = Full load speed (rpm)

Ts = Dwell torque (Nm=0)

Example

In an application where the torque speed profile is as above with Ta = 20Nm, TL = 5Nm, Td = -10Nm, ta = 20ms, tL = 5s, td = 30ms, ts = 3s, VL = 3000rpm, Ts = 0 calculate the rms torque for this application.

Trms =
$$\sqrt{\frac{20^2 \times 0.02 + 5^2 \times 5 + 10^2 \times 0.03 \times 0^2 \times 3}{0.02 + 5 + 0.03 + 3}}$$
Trms =
$$\sqrt{\frac{136}{8.05}}$$

Trms = 4.11Nm

15% tolerance required hence the rms torque for this application = 4.73Nm

4.9 Understanding motor heating effects

During operation, the motor is subjected to heating effects from several sources. Some of these are obvious; others obscure. Whilst the motor specification allows for most of these heating effects, others depend on the application. This section examines some of the causes of motor heating.

Motor copper losses

Motor copper loss is a product of the rms current squared and the resistance of the motor windings. It includes ripple currents, determined by the switching frequency of the drive and the inductance of the motor. The inductance of the winding is generally low, so that the maximum drive frequencies should be selected commensurate with drive heating losses. Data in this manual is for switching frequencies as stated in the performance data section. If lower frequencies are used, motor performance is reduced.

Motor copper loss also includes losses arising from waveform distortions of either the drive or motor or both. The motor's back EMF waveform is sinusoidal and of low harmonic distortion. If lower frequencies are used, the drive current has higher distortion and hence the motor performance is reduced.

Motor current depends on the torque demanded by the load at any instant. This is normally given by the motor torque constant (Kt) in Nm/A. Although regarded as a constant, Kt decreases slightly when the motor is at maximum temperature.

The Ke for a brushless three phase motor is always quoted Volts(rms) per Krpm, since the motor back emf is sinusoidal.

Motor iron losses

Motor iron loss is a heating effect produced in the motor laminations. It is caused by the rotating magnetic field cutting through the laminations, the higher the speed the higher the losses. For this reason the motor stall torque is greater than the motor rated torque at speed.

Iron loss depends on the strength of the magnetic field and type of laminations material.

Friction and windage

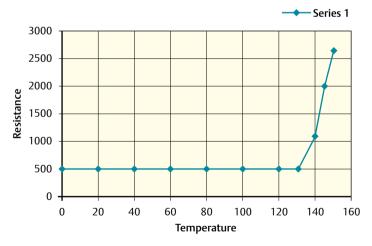
The bearings, oil seals and the air resistance to rotor speed cause internal friction. Its effect is relatively small and is included in the data provided.

Thermal protection

An incorrect system set up can give rise to excessive motor temperatures. This can be guarded against by the use of the motor thermistor protection facility.

Servo motor/drive system faults

Common but often unnoticed causes of motor overheating can be created by:


- → Instability (self induced oscillation) within the overall servo feedback system
- → Incorrect parameter settings in the drive protection system, for example peak current, and I²t (thermal protection calculation for the drive)

Thermistor protection

A PTC thermistor rated to 145°C, is built into the motor windings and is used to protect the motor against overheating problems.

The device remains a low resistance until a critical temperature is reached, where it will then switch to a very high resistance. The increase in resistance is measured by the drive and a "th trip" will occur. Only once the motor has cooled can the trip be cleared.

Unimotor fm PTC 145°C

The installer must connect the motor thermistor to the drive to cause motor power shutdown in the event of overheating. It is the installer's responsibility to ensure that this protection facility is properly connected and set at the drive.

Failure to ensure the correct operation of the protection facility invalidates the warranty in respect of a burnt out winding.

Environment and torque derating

The ambient temperature of the environment into which the Unimotor fm is mounted must be considered.

4.10 Motor derating

Motor derating

Any adverse operating conditions require that the motor performance be derated. These conditions include; ambient temperature above 40°C, motor mounting position, drive switching frequency or the drive being oversized for the motor.

Ambient temperatures

The ambient temperature around the motor must be taken into account. For ambient temperatures above 40°C the torque must be derated using the following formula as a guideline. (Note: Only applies to 2000/3000rpm motors and assumes copper losses dominate.)

New derated torque = Specified torque $\times \sqrt{\left[1-((Ambient temperature - 40^{\circ}C)/100)\right]}$

For example with an ambient temperature of 76°C the new derated torque will be 0.8 x specified torque.

Mounting arrangements

The motor torque must be derated if:

- → The motor mounting surface is heated from an external source, such as a gearbox.
- → The motor is connected to a poor thermal conductor.
- → The motor is in a confined space with restricted air flow.

Drive switching frequency

Most Unidrive and Digitax ST nominal current ratings are reduced for the higher switching frequencies. See the appropriate drive manual for details.

See the table below for the motor derate factors. These figures are for quidance only.

4.11 Motor derate factors

4.11.1 Unimotor fm

	Motor type/frame										
Switching frequency	055	075	095	1	115		142		190		
riequeriey	A-C	A-D	A-E	A-C	D-E	A-C	D-E	A-B	C-H	D-F	
3kHz	0.92	0.93	0.88	0.89	0.84	0.87	0.81	0.98	N/A	0.88	
4kHz	0.93	0.94	0.91	0.91	0.87	0.91	0.86	0.99	0.55	0.90	
6kHz	0.95	0.95	0.93	0.93	0.90	0.94	0.89	0.99	0.77	0.94	
8kHz	0.96	0.98	0.97	0.97	0.95	0.97	0.96	1	0.90	0.98	
12/16kHz	1	1	1	1	1	1	1	1	1	1	

Note

Only applies to motors up to 3000rpm (rms) for frame sizes 055 to 190 and 1500rpm (rms) for frame size 250. Assumes copper losses dominate on all frame sizes.

Derate factor is applied to stall torque, rated torque, stall current and rated power.

4.11.2 Unimotor hd

Switching	Motor type/frame							
frequency	055	067	089	115				
3kHz	0.92	0.93	0.89	0.89				
4kHz	0.93	0.94	0.91	0.92				
6kHz	0.95	0.95	0.95	0.96				
8kHz	0.96	0.98	0.97	0.98				
12/16kHz	1	1	1	1				

Note

Only applies to motors up to 3000rpm (rms) and assumes copper losses dominate.

4.12 Feedback selection

Feedback	Feedback		Encoder	SinCos cycles or incremental	Resolution available to	Multi	Other	Feedback		
device part number code	type	Manufacturer	supply voltage ¹	pulses per revolution	position loop ^{2&3}	-turn option ¹	information ¹	accuracy ¹	Vibration ¹	Shock Limit ¹
			6V rms		Medium		Transformation ratio 0.31	Low	High	High
AE	Resolver	API Harrowe	Excitation 6kHz	1	16384 (14 bit)	No	Resolver rotor winding 2 pole	±720"	(not stated by supplier)	(not stated by supplier)
					Medium		<u> </u>		Medium	Medium
CA				4096	16384 (14 bit)		0 1 1	re t	20g (10 - 2000 Hz)	100g per 10ms
MA	Incremental Encoder	SICK	5V	2048	8192 (13 bit)	No	Quadrature tracks	High ±60"	(to BS EN	(to BS EN 60068-2-27)
KA				1024	4096 (12 bit)				60068-2-6)	,
EC (Multi-turn) FC (Single turn)	Inductive absolute encoder	Heidenhain	7-10V	32	Medium Absolute position 524288 (19 bits)	Yes 4096 revs (12 bits)	EnDat serial comms	Medium ±280"	Medium 10g (55-2000Hz) (to IEC60 068-2-6)	Medium 100g 6ms (to IEC60 068- 2-27)
RA (Multi-turn) SA (Single turn)	SinCos optical encoder	SICK	7-12V	1024	High 1.04x10^6 (20 bits)	Yes 4096 revs (12 bits)	Hiperface	High For sin/cos Integral non-linearity ±45" For sin/cos Differential nonlinearity ±7" (Total accuracy ±52")	Medium 20g (10-2000 Hz) (to BS EN 60068-2-6)	Medium 100g per 10ms (to BS EN 60068-2-27)
EB (Multi-turn) FB (Single turn)	SinCos optical encoder	Heidenhain	3.6-14V	2048	Very High 2.08x10^6 (21 bits)	Yes 4096 revs (12 bits)	EnDat Serial comms	Very High ±20" (Differential non linearity ±1% signal period)	Medium 15g (55-2000Hz) (to IEC60 068-2-6)	Medium 100g 6ms (to IEC 60 068-2-27)
AR	Resolver	LTN RE-15	7V Excitation 5kHz	1	Medium 16384 (14 bit)	No	Transformation ratio 0,5 ±10 % Resolver rotor winding 2 pole	Low ±600"	High 50g (10 to 500 Hz)	Medium 100g (11ms)
					Medium					
KR	Incremental	Renco	5V	1024	4096 (12 bit)	No		Medium	Medium 10g	Medium 50g
MR	encoder	R35i		2048	8192 (13 bit)			±150"	(200 to 2000 Hz)	(11ms)
CR				4096	16384 (14 bit)				Modition	Madh
EM (Multi-turn) FM (Single turn)	Inductive absolute encoder	Heidenhain EQI1130 ECI1118	5V	16	Medium 2.62x10^5 (18 bits)	Yes 4096 revs (12 bits)	EnDat Serial comms	Medium ±480"	Medium 30g (55 to 2000 Hz) (EN 60 068-2-6)	Medium 100g (6ms) (EN 60 068-2-27)
TL (Multi-turn) UL (Single turn)	SinCos optical encoder	SICK SKM36 SKS36	7 - 12V	128	Medium 1.31x10^5 (17 bit)	Yes 4096 revs (12 bits)	Hiperface	High ±52"	Medium 50 g (10 to 2000 Hz) (EN 60 068-2-6)	Medium 100 g (6ms) (EN 60 068-2-27)
TM (Multi-turn) UM (Single turn)	SinCos optical encoder	Heidenhain EQN1125 ECN1113	3,6 - 14V	512	Medium 5.24x10^5 (19bit)	Yes 4096 revs (12 bits)	EnDat Serial comms	Hlgh ±60"	Medium 20g (55 to 2000 Hz) (EN 60068-2-6)	Medium 100g (6ms) (EN 60068-2-27)

¹The information is supplied by the feedback device manufacturer and relates to it as a standalone device. The values may change when mounted into the motor and connected to a drive. These values have not been verified by Control Techniques Dynamics.

²The output from the resolver is an anologue output. The resolution is determined by the anologue to digitial converter used. The value shown is when the resolver is used in conjunction with the SM-Resolver.

³The sin and cosine outputs from the SinCos optical encoders are analogue outputs. With Unidrive SP and Digitax ST the resolutions quoted above are when the encoder type is set to either SC Endat or SC Hiper depending on the encoder.

4.13 Feedback terminology

Accuracy

Accuracy is the measure of the difference between the expected position and actual measured value. Rotary feedback accuracy is usually given as an angle representing the maximum deviation from the expected position. Linear feedback accuracy is usually given as a distance representing the maximum deviation from the expected. Generally, as accuracy increases the cost of the feedback device increases.

Absolute encoder

Absolute encoders output unique information for each mechanical measured position. With the motor shaft or plate in any position when the drive is turned on the feedback device will always be able to sense a unique position and transmit this value to the drive. For an absolute single turn rotary encoder these unique positions will be over one revolution.

When power is removed from the encoder and the shaft or plate moves the device will know its current position when the power is restored.

A non-absolute feedback mechanism must start from a known position, such as the index or marker pulse.

Bit

A bit is short for Binary Digit. It is the smallest unit of information in a machine/drive. A single bit has a binary value of either 0 or 1. These bits do not normally exist on their own, but usually in groups. The larger the number of bits in a group the larger the amount of information that is available and thus the higher the resolution. This group can be converted to decimal using binary arithmetic. The group of bits can be converted to decimal by starting at the right most bit and multiplying each successive bit to the left by two. So for example a 12 bit number would give a decimal equivalent of 4,096 and a 19 bit number would give a decimal equivalent of 524,288.

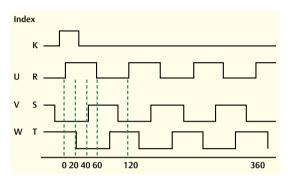
Commutation All brushless AC permanent magnet motors require commutation information to enable the drive to synchronise the stator flux field with the rotor of the motor.

> To ensure optimum torque at all rotor positions both when stationary and at speed the drive is required to maintain motor current in phase with the peak of the motor's sinusoidal waveform. The drive must therefore know the position of the rotor with respect to the stator at all times.

phase offset

Commutation Most drives, including the Unidrive SP, provide a "Phase Offset" adjustment as a means of correctly setting the commutation position.

> For feedback devices that are not aligned, the Unidrive SP has an Encoder Phasing Test (Autotune) (Pr 5.12) that automatically creates a Phase Offset value (Encoder phase angle) (Pr 3.25).


> All FM motor feedback devices are set to match the Unidrive SP definition of zero phase offset, so that the drive may operate with zero phase offset adjustment, thus allowing interchange of motors between drives without further adjustment.

Note that not all drives have the same zero offset definition.

outputs

Commutation Commutation outputs are used on devices that are nonabsolute. For AC Synchronous 3 phase motors there are 3 commutation output signal channels from the feedback device, for example S1, S2 and S3.

> The diagram below shows commutation outputs for 6 pole commutation (3 pole pairs). The 3 phase motor sinusoidal power from the drive runs synchronously with motor speed at N/2 cycles per revolution;

Where N = number of poles. For example a 6 pole motor the encoder commutation tracks will output 3 pulses per channel per revolution and for an 8 pole motor the encoder commutation tracks will give 4 pulses per channel per revolution.

The commutation signals allow the drive to operate the motor at 'switch on' with only a small possible reduction in efficiency and torque in the motor. The best way to explain this is to use an example where an encoder is connected to a motor with 6 poles.

On power up the drive would look at the S1, S2 and S3 signals to determine where the stator is relative to the rotor or magnetic plate. This would give a known position that is within 60° electrical of an electrical cycle (20° mechanical). During this initial period, the drive assumes that it is in the middle of this 60° unknown region. So the worse case error of this is 30° electrical (10° mechanical), which equates to a drop of 13.4% in the rated torque when 100% current is delivered into the motor winding. When the drive is commanded to move the motor position, the stator is energized causing the plate or rotor to move. While the rotor or plate is moving, the drive detects that a signal switch (edge detection) has occurred on one of the commutation channels (S1, S2 or S3). At this point the drive knows exactly where it is in the electrical cycle and adjusts the field orientation to compensate for the error. At this point the drive switches over to using only the incremental signals for commutation and the commutation channels are no longer used.

Electronic nameplate

Available on some feedback devices the electronic nameplate provides the facility to electronically store information about the motor and feedback device. This information can then automatically be used to configure the drive for operation.

Environment	The environment is the external conditions that physically surround the Feedback device. The main factors that affect the feedback device are temperature and mechanical shock and vibration.	SinCos/ Absolute Encoders	Types available are: Optical or Inductive - which can be single or multi-turn.		
	Motors are designed to allow the feedback devices to be within their operational temperature limits. Generally it is assumed that there is free air movement around the motor.	1) Optical	An electronic device using an optical disc. An absolute encoder with high resolution that employs a combination of absolute information, transmitted via a serial link, and sine/cosine signals with incremental techniques.		
	If the motor is positioned where there is little or no airflow or it is connected to a heat source such as a gearbox. This can cause the air temperature around the feedback device to be operating outside its recommended operating temperature and can lead to problems.	2) Inductive	An electronic device using inductively coupled PCBs. An absolute encoder with medium resolution that employs a combination of absolute information, transmitted via a serial link, and sine/cosine signals with incremental		
	Mechanical shock and vibration tends to be transmitted from the load, through the motor shaft and into the feedback device. This should be considered when the motor and feedback device are being specified for the application.		techniques. This encoder can be operated with the drive using either sine/consine or absolute (serial) values only. Positional information is absolute within 4096 turns - i.e. position is not lost when the drive is powered down.		
Position The defined position is the location in a coordinate syste which is usually in two or more dimensions. For a rotary feedback device this is defined as the location		Multi-turn	As previous but with extra gear wheels included so that th output is unique for each shaft position and the encoder has the additional ability to count complete turns of the motor		
	within one revolution. If it is a multi-turn device it is the location within one revolution plus the location within a number of rotations.	Serial Interface	shaft up to 4096 revolutions. Serial communication is available on some feedback devices. It is the process of sending data one bit at one time, sequentially, over a communication channel. The specification normally used to define this method of communication is the EIA485 specification. These can be synchronous, which means that they operate with additional clock channels. The main advantage of synchronous data transmission is that it can operate at hig speed. A disadvantage is that if the receiver goes out of		
	For a linear feedback device this is defined as the distance from a known point.				
Resolution	The resolution of a feedback device is the smallest change in position or angle that it can detect in the quantity that it is measuring.				
	Feedback resolution of the system is a function of the type of feedback device used and drive receiving the information.		synchronisation it can take time for it to resyncronise and data may be lost. Note that not all serial interfaces use the clock channels.		
	Generally, as the resolution of the feedback device increases the level of control that can be used in the servo system increases.		Serial interface communication allows data to be sent and received from the feedback device. In addition to the position and speed data other information can be sent		
	As with accuracy, as the resolution of the device increases the cost increases.		such as multi-turn count, absolute position and diagnostic information.		
Resolver	A passive wound device consisting of a stator and rotor elements excited from an external source, such as an SM-Resolver, the resolver produces two output signals that	Synchronous	If something is synchronous it means that events are coordinated in time. For serial interfaces this means that clock channels are used.		
	correspond to the sine and cosine angle of the motor shaft. This is a robust absolute device of low accuracy, capable of withstanding high temperature and high levels of vibration.	Asynchronous	If something is asynchronous it means that events are not coordinated in time. For serial interfaces this means that clock channels are not used.		
 Incremental	Positional information is absolute within one turn - i.e. position is not lost when the drive is powered down. An electronic device using an optical disc. The position is	Speed	Speed is the rate of change in position which can be either angular or linear traveled per unit of time. For rotational motors this is usually defined as revolutions per minute (RPM)		
encoder	determined by counting steps or pulses. Two sequences of pulses in quadrature are used so the direction sensing	Volatile	Stored information will be lost when power is removed.		
	may be determined and 4 x (pulses per rev) may be used for resolution in the drive. A marker pulse occurs once per	Non volatile	Stored information will not be lost when power is removed.		
	revolution and is used to zero the position count. The encoder also provides commutation signals, which are				

required to determine the absolute position during the motor phasing test. This device is available in 4096, 2048 and 1024 ppr version. Positional information is non absolute - i.e. position is lost when the drive is powered down.

4.14 Brake specification

Unimotor fm may be ordered with an internal rear mounted spring applied parking brake. The brake works on a fail safe principle: the brake is active when the supply voltage is switched off and the brake is released when the supply voltage is switched on.

The standard parking brake, noted by the 1 code in the part number, consists of spring applied plates operating onto a fibre plate. The high energy parking brake, noted by the 5 code in the part number, consists of spring applied plates operating onto a fibre plate that is mounted onto an aluminum disc. This arrangement allows for more energy to be dissipated while braking, as the heat is transferred into the aluminium disc, which in turn gives a high braking torque.

If a motor is fitted with a fail safe brake, take care not to expose the motor shaft to excessive torsional shocks or resonances when the brake is engaged or disengaged. Doing so can damage the brake.

4.14.1 Unimotor fm

			Static	torque			
Motor frame	Supply volts	Input power	Standard brake (1)	High energy brake (5)	Release time	Moment of inertia	Backlash
Size	Vdc	Watts	Nm	Nm	ms nom	kgcm² *	Degrees**
055	24	6.3	1.8	N/A	22	0.03	0.75
075	24	6.3	2	2.2	22	0.07	1.03
095	24	16	11	12.2	60	0.39	0.94
115	24	16	11	12.2	60	0.44	0.56
142	24	19.5	18	22	75	0.54	0.56
190 (A-D)	24	25	38	42	95	3.07	0.77
190 (E-H)	24	25	60	67	120	4.95	0.77
250	24	62	N/A	135	252	16.37	0.77

- *Note 1 kgcm² = 1x10-4kgm² **Backlash figure will increase with time
- → The brakes are intended for parking duty and are not for dynamic or safety use
- → Refer to your Drive Centre or Distributor if your application requires dynamic braking in emergency conditions
- → To provide protection to the brake control circuit it is recommended that a diode is connected across the output terminals of the solid state or relay contacts devices
- Larger torque brakes are available as an option.
 Contact your Drive Centre or Distributor for details
- → Figures are shown at 20°C brake temperature. Apply the derate factor of 0.7 to the standard brake torque figures if motor temperature is above 100°C. A derate factor of 0.9 applies to the high energy brake if motor temperature is above 100°C
- The brake will engage when power is removed

Note.

Shunting the brake with an external diode to avoid switching peaks increases the release time considerably. This is usually required to protect solid state switches, or to reduce arcing at the brake relay contacts (Diode 1N4001 recommended)

SAFETY NOTE

The Fail-Safe Brake is for use as a holding brake with the motor shaft stationary.

Do NOT use it as a dynamic brake, except for emergencies such as a mains supply failure.

4.14.2 Unimotor hd

			Static	torque			Backlash	
Motor frame	Supply volts	Input power	Standard parking brake (01)	parking parking		Moment of inertia		
Size	Vdc	Watts	Nm	Nm	ms nom	kgcm² *	Degrees**	
055	24	6.3	1.8	N/A	22	0.03	0.73	
067	24	10.2	N/A	4	<50	0.073	0.75	
089	24	23.35	N/A	10	<50	0.115	0.75	
115	24	19.5	N/A	25	120	0.327	0.75	

*Note 1 kgcm² = 1x10-4kgm² **Backlash figure will increase with time

- → The brakes are intended for parking duty and are not for dynamic or safety use
- The brake will engage when power is removed.
- → Refer to your Drive Centre or Distributor if your application requires dynamic braking in emergency conditions.
- → To provide protection to the brake control circuit it is recommended that a diode is connected across the output terminals of the solid state or relay contacts devices.
- → Figures are shown at 20° ambient. Apply a de rate factor of 0.7 to the standard brake torque figures if motor temperature is above 100°C

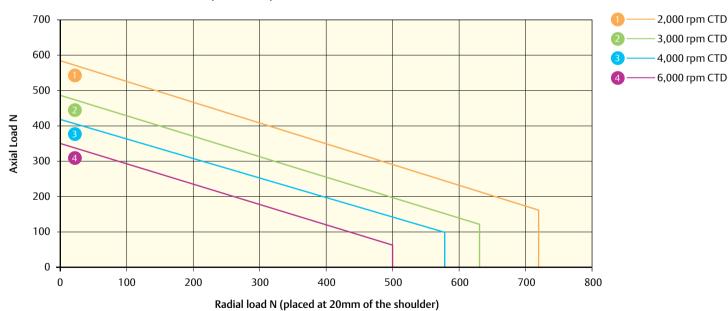
4.15 Radial load

When selecting a motor some consideration must be made to the loading that the required application will put on the motor shaft. All shaft loads are transferred to the motor's bearing system, so a poorly selected motor could result in premature bearing failure.

Maximum axial and radial load

The following graphs show the Unimotor in terms of bearing strength. It has to be noted that the graphs are based on theoretical calculation, and that the bearing life of the motor is affected by the following:

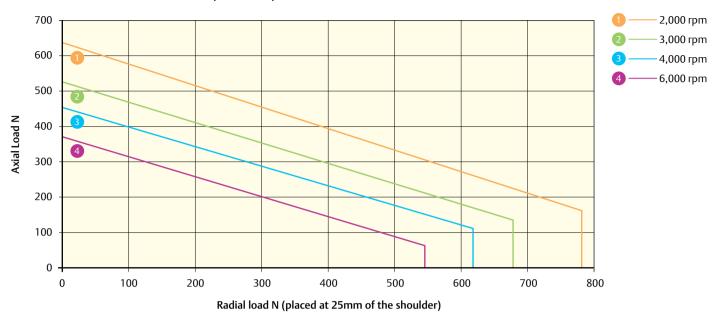
- → Speed
- → Radial load applied to the bearings
- → Axial load applied to the bearings
- → Shock and vibration (external shock/vibration applied to the motor)
- → Bearing temperature
- → Bearing cleanliness
- Motor mounting to the application

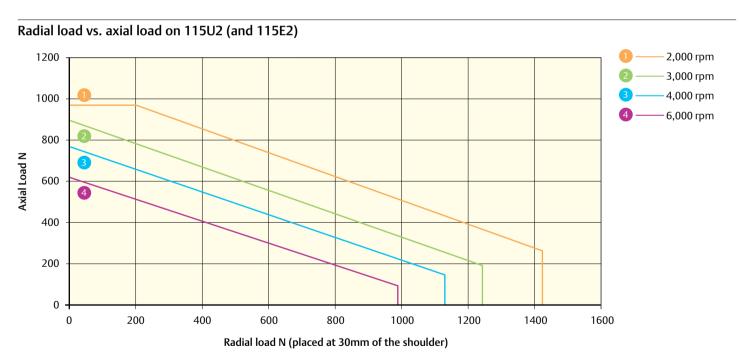

The loads in the following graphs have been calculated using ISO 281 calculation L10(h). The loads and speeds used are considered to be constant throughout the life of the bearing.

The following factors have been taken into consideration when calculating the loads:

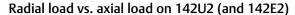
- → 90% reliability
- → Radial load applied on the output shaft away from the shoulder and constant. The distance can be read on the different graphs
- Axial load going toward the motor and constant
- → Load factor of 1: no vibration applied to the motor
- → Temperature of the bearing: 100°C max
- Grease clean

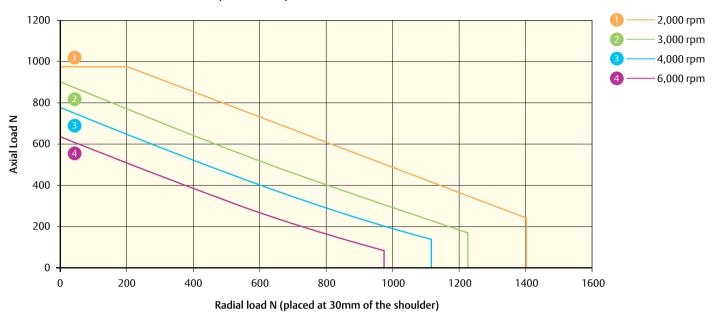
4.15 Radial load Unimotor fm


Radial load vs. axial load on 75U2 (and 75E2)

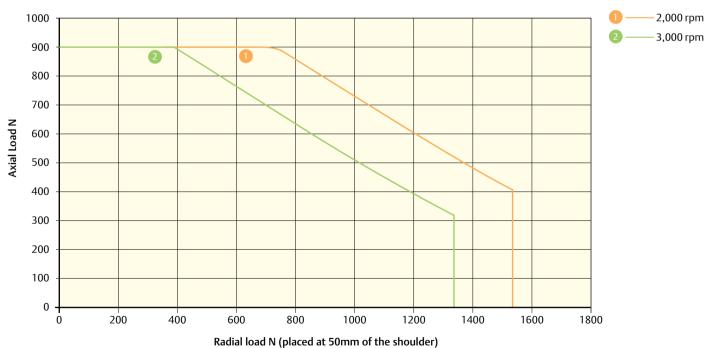

 $75U2 L_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 900 N

Radial load vs. axial load on 95U2 (and 95E2)

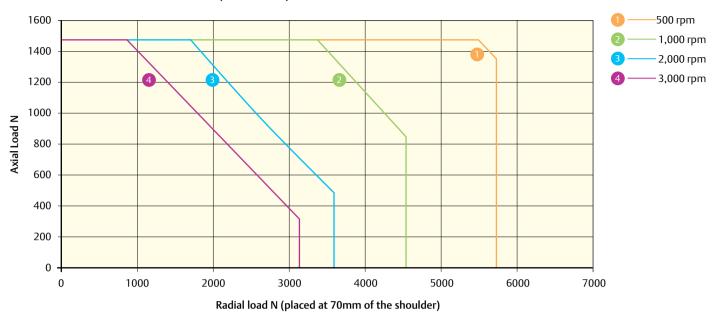



 $95U2L_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 850 N

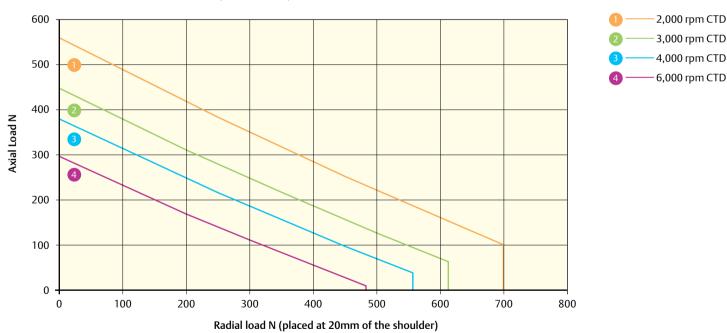
 $115 U2\ L_{_{10(h)}} Bearing\ life\ for\ 20,000\ hours\ (reliability\ 90\%,\ load\ factor\ of\ 1).\ Do\ not\ exceed\ a\ maximum\ axial\ load\ of\ 950\ N$



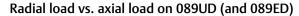
 $142U2 L_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 950 N

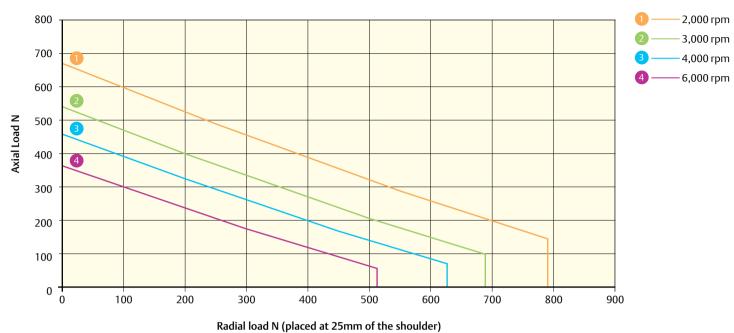

Radial load vs. axial load on 190U2 (and 190E2)

 $190U2\ L_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 900 N

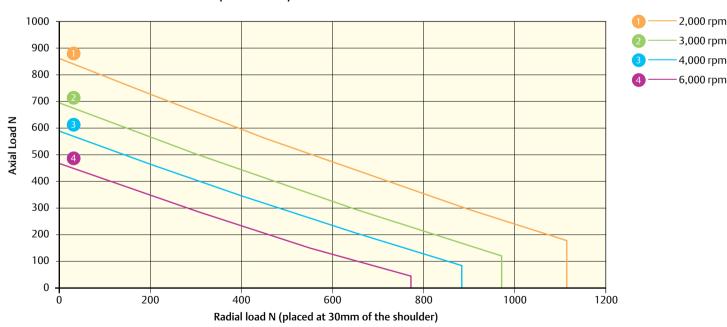

Radial load vs. axial load on 250U2 (and 250E2)

 $250U2\,L_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 1450 N


4.15.2 Unimotor hd



 $067 UD\ L_{_{10(h)}} Bearing\ life\ for\ 20,000\ hours\ (reliability\ 90\%,\ load\ factor\ of\ 1).\ Do\ not\ exceed\ a\ maximum\ axial\ load\ of\ 650\ N$



089UD L $_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1). Do not exceed a maximum axial load of 1000 N

Radial load vs. axial load on 115UD (and 115ED)

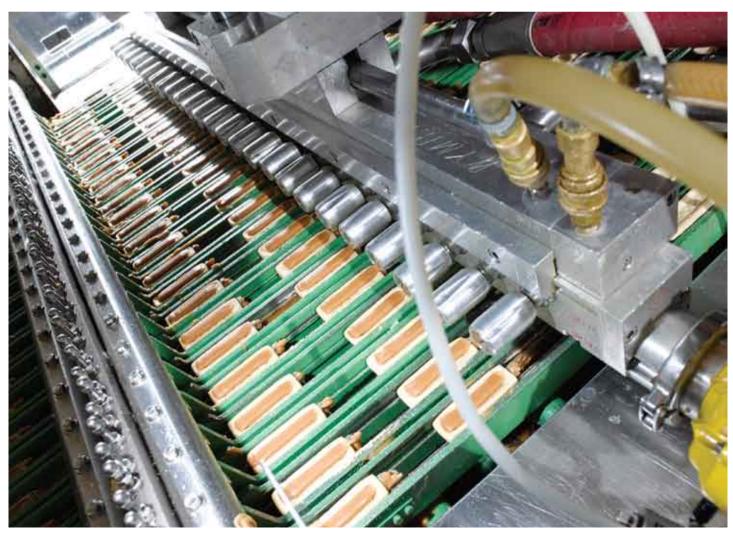
 $115 \text{UD L}_{_{10(h)}} \text{Bearing life for 20,000 hours (reliability 90\%, load factor of 1)}. Do not exceed a maximum axial load of 1200 \, N \\$

It can be seen on some graphs that the curve line becomes horizontal. This is due to the axial pushing load on the shaft (see *Shaft push back load*). This limit should not be exceeded in case the shaft moves.

4.16 Bearing life and output shaft strength

The maximum output shaft that can be machined on the motor is determined by the inner diameter of the bearings. The bearing sizes on Unimotor fm motors have increased in comparison with the Unimotor UMs and this allows a larger output shaft to be machined. Larger output shafts mean stronger output shafts.

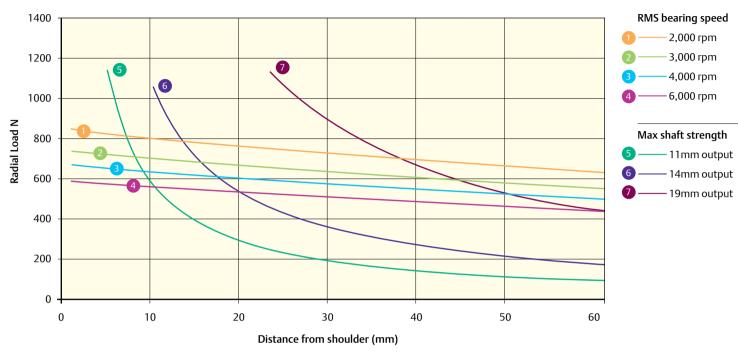
The following graphs show this improvement.


Maximum Bearing life

It has to be noted that the graphs are based on theoretical calculations and the motor is affected by the following.

- → Speed
- Radial load applied to the bearings
- → Axial load applied to the bearings
- → Shock and vibration (external shock/vibration applied to the motor)
- Bearing temperature
- Bearing cleanliness
- → Motor mounting to the application

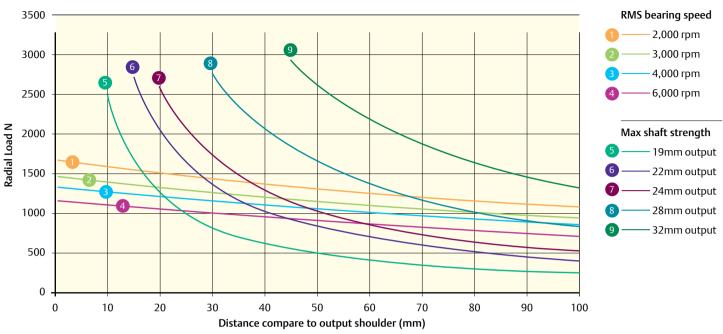
The loads in the following graphs have been theoretically calculated. The following factors were taken into consideration:


- → 90% reliability (for bearing life only)
- → Radial load applied on the output shaft away from the shoulder and constant. The distance can be read on the different graphs.
- Axial loads going towards the motor and constant (Axial load = 0Nm)
- Load factor of 1: no vibration applied to the motor (for bearing life only).
- → Temperature of the bearing: 100°C max.
- → Grease clean (for bearing life only).
- → Torque alternating (for shaft strength only).

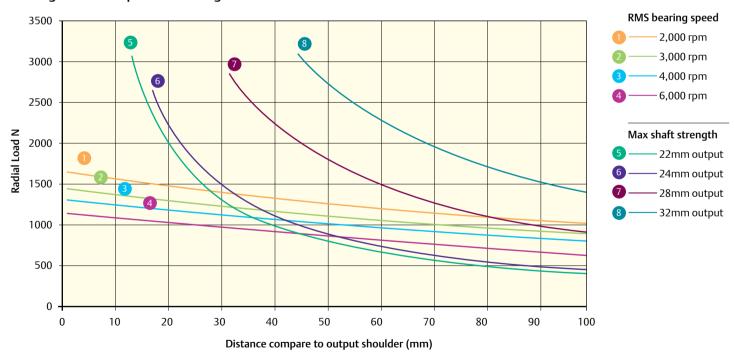

4.16.1 Unimotor fm

Bearing life and output shaft strength on 75U2

 $75U2 L_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1)

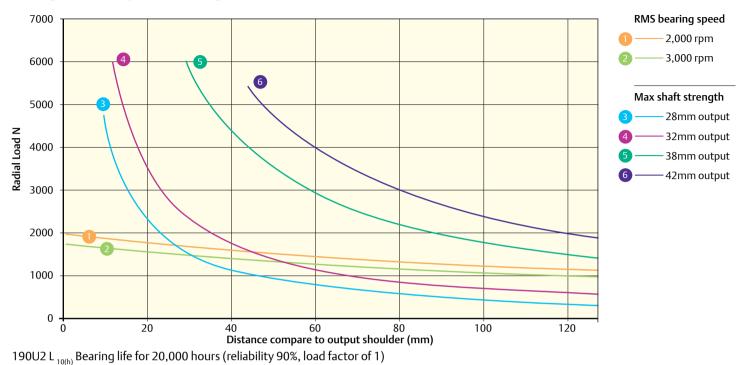

Bearing life and output shaft strength on 95U2

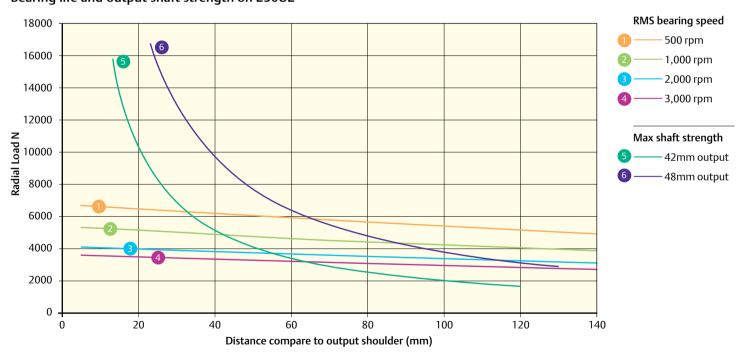
95U2 L $_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1)



Bearing life and output shaft strength on 115U2

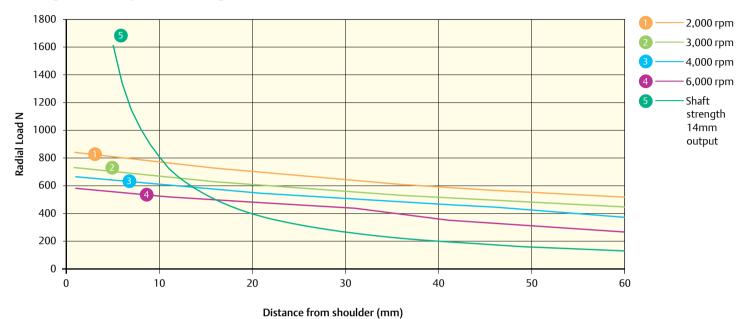
 $115 U2\,L_{_{10(h)}}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1)


Bearing life and output shaft strength on 142U2

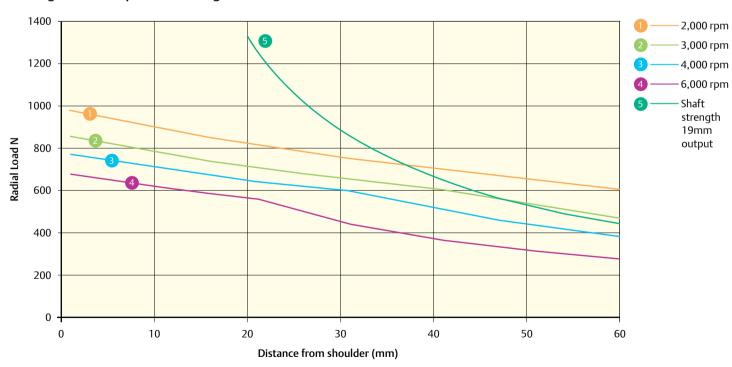

142U2 L $_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1)

Bearing life and output shaft strength on 190U2

Bearing life and output shaft strength on 250U2

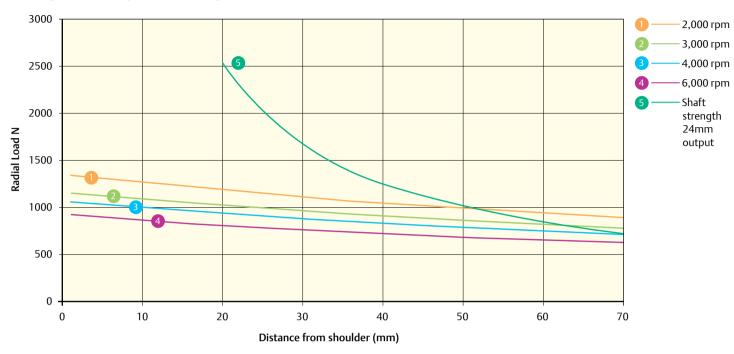


 $250U2\,L_{_{10(h)}}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1)


4.16.2 Unimotor hd

Bearing life and output shaft strength on 067UD

067UD L $_{10(h)}$ Bearing life for 20,000 hours (reliability 90%, load factor of 1).


Bearing life and output shaft strength on 089UD

089UD L $_{_{10(h)}}\mbox{Bearing}$ life for 20,000 hours (reliability 90%, load factor of 1).

Bearing life and output shaft strength on 115UD

115UD L $_{_{10(h)}}\mbox{Bearing}$ life for 20,000 hours (reliability 90%, load factor of 1)

Shaft push back load

The minimum pushing load needed to move the rotor relative to the bearings.

The table (right) shows the minimum push back force on Unimotor.

Motor	Push back force (N)
Unimo	tor FM
075	900
095	850
115	950
142	950
190	900
250	1450
Unimo	tor HD
067	650
089	1000
115	1200

5 Motor and signal cables

Cables are an important part of a servo system installation. Not only must the noise immunity and integrity of the cabling and connectors be correct, but also SAFETY and EMC regulations must be complied with to ensure successful, reliable and fail safe operation. One of the most frequent problems experienced by motion systems engineers is incorrect connections of the motor to the drive.

Control Techniques Dynamics ready made cables mean system installers can avoid the intricate, time consuming assembly normally associated with connecting servo systems. Installation and set-up time are greatly reduced - there is no fiddling with wire connections and crimp tools, and no fault finding.

The cables are made to order in lengths from 1m to 50m/100m.

Cable range for motor-drive combination

- → Unimotor fm U2 /U4 and Unimotor hd UD to Unidrive SP
- → Unimotor fm E2 and Unimotor hd ED to Unidrive SP low voltage and Epsilon EP
- → Unimotor fm and Unimotor hd to Digitax ST / Unidrive SP size 0

Power cable variants

- → Phase conductors 1.0mm² (10A) to 16mm² (70A)
- → With and without brake wire pairs
- → Motor end connector
- → Motor end Ferrules for Hybrid box
- Drive end is tailored to suit the drive and can be ferrules or ring terminals

Cable features

- → For dynamic performance PUR outer sheath for oil resistance and dynamic performance. The PUR jacket has excellent abrasion, chemical and ozone resistance, low smoke, low halogen flame retardant construction suitable for internal and external industrial environments.
- → OFS outer sheath for oil resistance and static performance.
- → Complies with DESINA coding Orange for power, Green for signal
- → Power cable and plugs UL recognised
- → Optimum noise immunity
- Encoder cable has low volt drop for long cable lengths and separately screened thermistor wires.
- → No need for crimp and insertion / removal tools
- → Production build gives quality and price benefits
- → Power cables with and without brake wires
- → Cable assembly type identification label
- → Brake wires are separately shielded within the power cable

Power - PUR Basic cable types

Phase & conductor size (current rating	Power plug size	Current rating	Overall cable diameter (mm)		
Cenlec EN60204.1)	Size	size facility		Braked	
G – 1.5mm² (16A)	Size 1	30A sockets	8.5	10.8	
A – 2.5mm ² (22A)	Size i	SUA SUCREIS	10.0	12.6	
B – 4.0mm ² (30A)	Size 1 Size 1.5	30A sockets 53A sockets	11.7	14.1	
C – 6.0mm ² (39A)			17.4	17.4	
D - 10.0mm ² (53A)	Size 1.5	70A sockets	20.4	20.4	
E – 16.0mm ² (70A)			23.4	23.4	

Note

- → Minimum bend radius = 10x dia long travel, 7.5x dia unsupported chain. Bending life 10.000.000 cycles
- → Maximum accelaration = 20m/s²
- → Temperature rating -10°C to +80°C

Power – OFS basic cable types

Phase & conductor size	Power plug	Current	Overal diamete	
(current rating Cenlec EN60204.1)	size	rating	No brake	Braked
H – 1.0 mm ² (10A)	Size 1	30A sockets	8.2	10.8

Note

- → Minimum bend radius = 15x dia long travel
- → Maimum accelaration = 6m/s²
- → Temperature rating -10°C to +60°C

Signal – PUR basic cable types

Cable type	Cable code	Overall cable diameter (mm)
Encoder / SinCos Heidenhain	SIBA/SSBE	10.9
Resolver / SinCos SICK	SRBA/SSBA	9.6
Encoder	SIBL	8.5

Note

- → Minimum bend radius = 10x dia long travel 7.5x dia short unsupported. Bending life 10,000,000 cycles
- → Maximum accelaration SRBA/SSBA = 20m/s² SIBA/SIBL = 10m/s²
- → Temperature rating -10°C to +80°C

Signal – OFS basic cable types

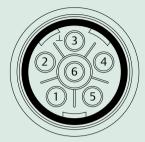
Cable type	Cable code	Overall cable diameter (mm)
Encoder	SICA	
Resolver / SinCos SICK	SRCA/SSCA	

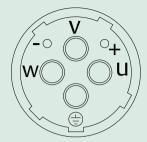
Note

- → Minimum bend radius = 15x dia long travel
- → Maimum accelaration = 6m/s²
- → Temperature rating -10°C to +60°C

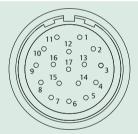
Cable information

PS	В	A		F	А	015
Cable type Jacket		Phase & ground: conductor size		Connection details drive end	Connection details motor end	Cable length
PS = Power (Standard)	B = PUR	H** = 1.0mm ²	10A	C = 6 way power extension connector	A = 055 -142 Unimotor	Min = 001 (1m)
PB = Power (with brake)	PB = Power (with brake) C = OFS		16A	F = Unidrive (size 1-2) Ferrules	075 -115 Unimotor 🕮 fan blown 055 -115 Unimotor hd	Max = 100 (100m)
		$A = 2.5 \text{mm}^2$	22A	G = Unidrive (size 3) Ring terminals	size 1 power connector	
		$B = 4.0 \text{mm}^2$	30A	H = Digitax ST and SP0 Ferrules	B = 190 - 250 Unimotor ∰	
		$C^* = 6.0 \text{mm}^2$	39A	J = Unidrive (size 4) Ring terminals	142 - 250 Unimotor 🕮 fan blown	
* Ring terminals for Drive s	tuds only	$D^* = 10.0 \text{mm}^2$	53A	K = Epsilon EP Ferrules	size 1.5 power connector	
* * Only available in OFS		$E^* = 16.0 \text{mm}^2$	70A	X = Cut end	J = 250 hybrid ferrules	
					X = Cut end	
Cable type		PS for motor	witho	ut brakes, PB for motors with brak	re.	
Jacket		B is for the PU	R shea	th and is the Dynamic cable selectio	n. C is for the OFS sheath and is the	Static cable selection.
Conductor size Select the conductor size according to the motors STALL CURRENT. Cables of 6mm² and above we fitted with ring terminals only. Ratings are for individual cables (not lashed together) in free air to up to 40°C - make allowances as appropriate.						
Connection detail driv	e end	Select the co	rrect c	lrive end connection for the drive	in use.	
Connection detail mot	or end	Select the co	rrect r	notor end connection for the mot	or in use.	
Length		Numbers rep	resent	the required cable length in meti	es.	


SI	В	Α	Α	A	015
Cable type	Jacket	Special options		Connection details motor end	Cable length*
SI = Incremental Encoder hyperboloid pins	B = PUR	A = Standard cable		A = Encoder 17 pin connector	Min = 001 (1m)
SR = Resolver	C ** = OFS	E = Twisted screened SS cable		B = Resolver 12 pin connector	Max = 100 (100m)
SS = Sin/Cos Encoder		L = 8.5mm dia SI cable		C = Sin/Cos 12 pin connector (Hiperface)	
SE = Incremental Encoder split pins				E = 17 pin extension connector	
				F = 90° Encoder 17 pin connector	
Connection de	tails drive ei	nd	Ш	G = 90° Resolver 12 pin connector	
A = Digitax ST/Unidrive @P/Epsilon EP Enc	oder 15 pin c	connector		H = 90° Sin/Cos 12 pin connector (Hiperface)	
B = Resolver / Sin/Cos Ferrules				N = Sin/Cos 17 pin connector (EnDat)	
F = Epsilon Encoder 26 pin connector				O = 90° Sin/Cos 17 pin connector (EnDat)	
I = Extension connector male pins				X = Cut end	
H = Digitax ST/Unidrive & Sin/Cos 15 pin connector			$^*\mbox{Max}$ cable length: 50m with the SIBA/SICA as standard, 100m only if +5V toler-		
X = Cut end				ance can be maintained. 10m with the SIBL. Heidenhain EC/F with the SSBA cable, EC/FC 20m EB/FB 100m with the SSBE cable.	
				* * OFS only available on SI encoder cable	


Cable type	Choose the cable type to match the feedback device.
Jacket	B is for the PUR sheath and is the Dynamic cable selection. C is for the OFS sheath and is the Static cable selection.
Special options	A is for standard cable. L is for the low cost 8.5mm incremental cable.
Connection detail drive end	Select the correct drive end connection for the drive in use.
Connection detail motor end	Select the correct motor end connection for the motor feedback device in use.
Length	Numbers represent the required cable length in metres.

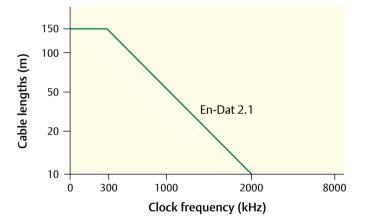
5.2 Motor connector details


Power plug

Size 1	With brake	Without brake	Size 1.5	With brake	Without brake
Pin	Function	Function	Pin	Function	Function
1	Phase U (R)	Phase U (R)	U	Phase U (R)	Phase U (R)
2	Phase V (S)	Phase V (S)	V	Phase V (S)	Phase V (S)
3	Ground	Ground	=	Ground	Ground
4	Phase W (T)	Phase W (T)	W	Phase W (T)	Phase W (T)
5	Brake		+	Brake	
6	Brake		-	Brake	
Shell	Screen	Screen	Shell	Screen	Screen

Signal plug

	Incremental encoder	Heidenhain Absolute	Resolver	SICK Sin/Cos
	(CR, MR, KR, CA, MA, KA, CR)	encoders (EM, FM, EC, FC, EB, FB)	(AR, AE)	encoders (TL, UL, RA, SA)
Pin	Function	Function	Function	Function
1	Thermistor	Thermistor	Excitation High	REF Cos
2	Thermistor	Thermistor	Excitation Low	+ Data
3		Screen (Optical encoder only)	Cos High	- Data
4	S 1		Cos Low	+ Cos
5	S1 Inverse		Sin High	+Sin
6	S2		Sin Low	REF Sin
7	S2 Inverse		Thermistor	Thermistor
8	\$3	+ Clock	Thermistor	Thermistor
9	S3 Inverse	- Clock		Screen
10	Channel A	+ Cos		0 Volts
11	Index	+ Data		-
12	Index Inverse	- Data		+ V
13	Channel A Inverse	- Cos		
14	Channel B	+ Sin		
15	Channel B Inverse	- Sin		
16	+ V	+ V		
17	0 Volts	0 Volts		
Body	Screen	Screen		Screen


5.3 Maximum cable length

Due to the volt drop down the power lines within the feedback cable, each feedback device has a maximum length restriction placed upon it.

Maximum recommended length

Cable tumes	Maximum cable length							
Cable types	Resolver		Renco	SICK		Heidenhain		n
SIBA			CR	CA/MA/KA				
Incremental			TBA	50m				
SRBA	AE	AR						
Resolver	100m	100m						
SSBA					RA/SA	EB/FB	EC/FC	EM/FM
SinCos					100m	30m	20m	TBA
SSBE					RA/SA	EB/FB	EC/FC	EM/FM
SinCos					100m	100m	20m	TBA
SIBA			CR	CA/MA/KA				
Incremental			TBA	10m				

With EnDat 2.1 communication the clock frequency is variable from 100kHz to 2MHz. As long cable runs and high clock frequencies increase the signal run time, due to the propagation delay within the cable, the drive centre must ensure that the correct cable length is used.

IMPORTANT NOTE FOR INDUCTIVE ENCODERS ONLY (EC/FC)

These inductive encoders will require a change to the drive settings as they do not work with the default settings when used in EnDat only mode. This is due to the increase in resolution provided by the EnDat position and the time limit imposed by the drive on how long it takes to obtain the position information from the encoder.

These new inductive encoders only have 32 sine waves per revolution. This means that even with the SinCos interpolation in the drive, a higher resolution can be obtained by using the encoders in EnDat only mode (Pr 3.38 = EndAt) rather than SinCos EnDat mode (Pr 3.38 = SC.EndAt).

The default value of Pr 3.37 (Drive encoder comms baud rate (kbaud)) in Unidrive SP and Digitax ST, is 300 (2).

To use the inductive encoder in EnDat only mode the minimum setting must be 400 (3).

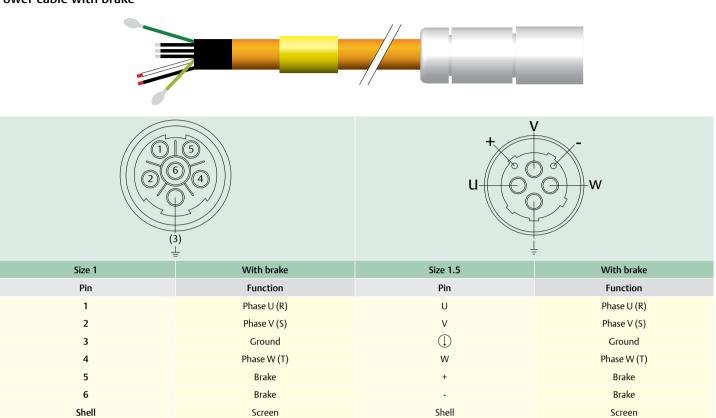
To use the inductive encoder in EnDat only mode the recommended setting should be 1500 (6).

The performance of the drive will be reduced if a baud rate of less than 1.5Mbaud is used with these encoders.

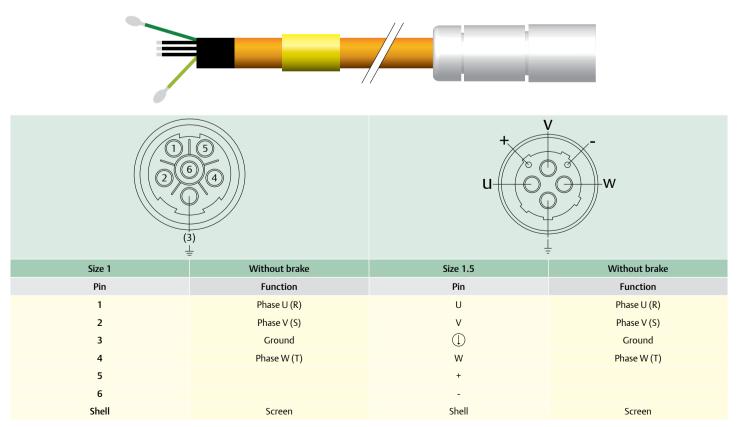
Inductive encoder's baud rate/cable length table.

The maximum cable length is restricted by two factors, the encoder supply volt drop down the line, and the baud rate (clock frequency).

Please use the table below to ensure that the correct baud rate/cable length is selected when using Control Techniques Dynamics cables.


Parameter	arameter Parameter p		CTD Cable length		Drive
value	string	Baud rate	SSBE	SSBA	sample rate
0	100	100k	N/A	N/A	N/A
1	200	200k	N/A	N/A	N/A
2	300	300k	N/A	N/A	N/A
3	400	400k	90m	25m	Slow
4	500	500k	90m	25m	Slow
5	1000	1M	45m	25m	Slow
6	1500	1.5M	20m	20m	Fast
7	2000	2M	10m	10m	Fast

For more information regarding the drive sample rate and the effect of the baud rate, please see parameter 3.37 in the Unidrive SP Advanced User Guide.



5.4 Power cable range

Power cable with brake

Power cable without brake

Signal cable Incremental Encoders SIBAAAxxx or SIBLAAxxx

Incremental cable:

SIBAxxxx, dia 10.9mm, maximum length 50m SIBLxxxx, dia 8.5mm, maximum length 10m

15-way drive	connections	17-way motor encoder plug		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		2 (1) (1) (1) (3) (1) (1) (6) (9) (4) (4) (5) (8) (5) (6) (7)		
Pin	Colour	Pin	Function	
Body	White	1	Thermistor 0V	
15	Brown	2	Thermistor Signal	
-	Orange or black	3	Screen	
7	Green	4	S1	
8	Yellow	5	S1 Inverse	
9	Grey	6	52	
10	Pink	7	S2 Inverse	
11	Black	8	S3	
12	Purple	9	S3 Inverse	
1	Grey/Pink Band	10	Channel A	
5	White/Green Band	11	Index	
6	Brown/Green Band	12	Index Inverse	
2	Red/Blue Band	13	Channel A Inverse	
3	Red(0.34mm²)	14	Channel B	
4	Blue(0.34mm²)	15	Channel B Inverse	
13	Red(1.0mm²)	16	+Volts	
14	Blue(1.0mm²) + White	17	0Volts + Thermistor	
Body	Screen	Body	Screen	

Signal cable SinCos SSBAHCxxx for SICK Encoders

SinCos cable: SSBAxxxxx, dia 9.6mm, maximum length 100m

15-way drive	connections	12-way motor encoder plug		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		8 9 1 7 12 10 2 6 11 3		
Pin	Colour	Pin	Function	
2	Red	1	REF Cos	
5	Blue	2	+ Data	
6	Violet	3	- Data	
1	Orange	4	+ Cos	
3	Brown	5	+Sin	
4	Black	6	REF Sin	
14	Yellow	7	Thermistor	
15	Green	8	Thermistor	
Body	Screen	9	Screen	
14	Blue/White(0.5mm²)	10	0 Volts	
	-	11	-	
13	Red/White(0.5mm²)	12	+ V	
Body	Screen	Body	Screen	

Signal cable SinCos SSBAHNxxx for Heidenhain Encoders

 $\textbf{SinCos cable:} \ SSBAxxxxxx, \ dia\ 9.6mm, \ maximum\ length\ 20m\ EC/FC, \ maximum\ length\ 30m\ EB/FB$

15-way drive	connections	17-way motor encoder plug		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		(2) (1) (3) (3) (4) (4) (4) (5) (6)	(1) (2) (3) (7) (6) (9) (7) (8) (7)	
Pin	Colour	Pin	Function	
14	Yellow	1	Thermistor	
15	Green	2	Thermistor	
Body	Orange or Black	3	Internal cable screen	
7		4		
8		5		
9		6		
10		7		
11	Yellow / White	8	+Clock	
12	Black / White	9	-Clock	
1	Orange	10	+Cos	
5	Blue	11	+Data	
6	Violet	12	-Data	
2	Red	13	-Cos	
3	Brown	14	+Sin	
4	Black	15	-Sin	
13	Red / White (0.5mm²)	16	+Volts	
14	Blue / White (0.5mm²)	17	0 Volts	
Body	Screen	Body	Screen	

Signal cable SinCos SSBEHCxxx for SICK Encoders

SinCos cable: SSBExxxxx, dia 10.9mm, maximum length 100m

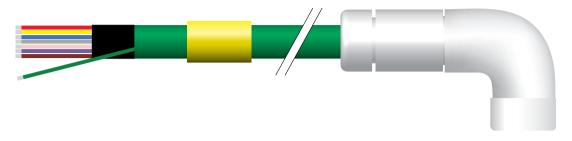
15-way drive	e connections	12-way motor	encoder plug
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15		8 9 1 7 12 10 2 6 11 3 5 4	
Pin	Colour	Pin	Function
2	Red	1	REF Cos
5	Grey	2	+ Data
6	Pink	3	- Data
1	Blue	4	+ Cos
3	Purple	5	+Sin
4	Black	6	REF Sin
14	White	7	Thermistor
15	Brown	8	Thermistor
Body	Screen	9	Screen
14	Blue (1.0mm²)	10	0 Volts
	-	11	-
13	Red (1.0mm²)	12	+ V
Body	Screen	Body	Screen

Signal cable SinCos SSBEHNxxx for Heidenhain Encoders

 $\textbf{SinCos cable:} \ \textbf{SSBExxxxxx}, \ dia \ 10.9 mm, \ maximum \ length \ 20 m \ EC/FC, \ maximum \ length \ 100 m \ EB/FB$

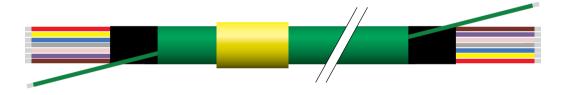
15-way drive	e connections	17-way motor encoder plug		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		2 12 10 3 13 17 16 9 4 14 15 8 5 6 7		
Pin	Colour	Pin	Function	
14	White	1	Thermistor	
15	Brown	2	Thermistor	
Body	Orange or Black	3	Internal cable screen	
7		4		
8		5		
9		6		
10		7		
11	Black	8	+Clock	
12	Purple	9	-Clock	
1	Grey / Pink	10	+Cos	
5	White / Green	11	+Data	
6	Brown / Green	12	-Data	
2	Red / Blue	13	-Cos	
3	Red (0.34mm²)	14	+Sin	
4	Blue (0.34mm²)	15	-Sin	
13	Red (1.0mm²)	16	+Volts	
14	Blue (1.0mm²)	17	0 Volts	
Body	Screen	Body	Screen	

Signal cable Resolver SRBxBBxxx


Resolver cable: SRBAxxxxx, dia 9.6mm, maximum length 100m

Drive cor	nnections	12-way motor	encoder plug
SM-Resolver		7 (12)	9 (1) (10) (2) (1) (3) (4)
Pin	Colour	Pin	Function
13	Red	1	Excitation high
14	Orange	2	Excitation low
11	Blue	3	Cos high
12	Violet	4	Cos low
10	Brown	5	Sin high
9	Black	6	Sin low
	Yellow	7	Thermistor
	Green	8	Thermistor
		9	
		10	
		11	
		12	
Body	Screen	Body	Screen

Other options of motor or drive connections are available. Below are some examples, or contact Control Techniques Dynamics Limited for details.


Right angle motor connectors

Cut end cables

UM terminal/hybrid box cables

5.5 Selecting connector kits

Control Techniques Dynamics can supply a full range of connectors for the Unimotor range. The tables below show the connector kits and spare sockets that are available.

Power connectors			
Single connector type	CTD connector part no	Spare sockets	
Size 1 power (30A)	IM/0039/KI	IM/0047/KI	
Size 1.5 power (4mm² cable : 53A)	IM/0053/KI	IM/0056/KI	
Size 1.5 power (>6mm² cable : 70A)	IM/0054/KI	IM/0057/KI	
Brake	-	IM/0048/KI	

Signal connectors				
Single connector type	CTD connector part no	Spare sockets		
Encoder/SinCos (Heidenhain)	IM/0022/KI	IM/0049/KI		
Resolver/SinCos (SICK)	IM/0023/KI	IM/0049/KI		
Resolver/SinCos(SICK) 90°	IM/0033KI/01	IM/0049/KI		
Encoder/SinCos(Heidenhain) 90°	IM/0033/KI/02	IM/0049/KI		

Power/signal type	CTD part no
Size 1 power + Encoder/SinCos (Heidenhain)	IM/0012/KI
Size 1 power + Resolver/SinCos (SICK)	IM/0011/KI

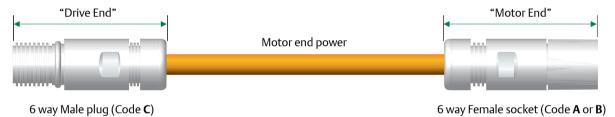


5.6 Unimotor signal and power extension cables

These cables are designed so that existing cables can be extended.

Signal cable

The signal extension cable uses a male contact version of the signal connector (Male plug) at the "Drive end" with the standard female contact version of the signal connector (Female socket) at the "Motor End".



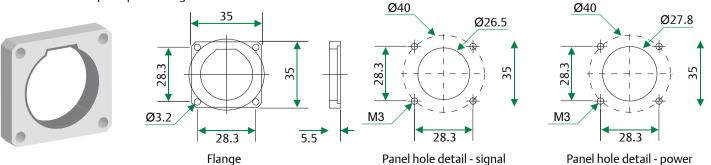
Examples of the order codes for these cables are shown below:-

- → SIBAIA003 (Incremental encoders)
- → SRBAIB003 (Resolver)
- → SSBAIC003 (SICK SinCos encoders)
- → SSBAIN003 (Heidenhain Absolute encoders)

6 way Power cables

The Power extension cable has a male contact version of the power connector (Male plug) at the "Drive end"), with the standard female contact version of the power connector (Female plug) at the "Motor end"

Examples of the order codes for these cables are shown below:-

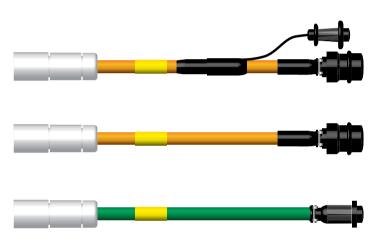

- → PSBACA003 (Unimotor size 055 to 142)
- → PSBCCB003 (Unimotor size 190 to 250)

6 way Power cables

The Flange kits must be ordered separately under the following part numbers

- → Power size 1.5 Flange kit part number 7579179
- → Signal Flange kit part number 7579160

See below for example of power flange.



5.7 DS/MS conversion cables

Conversion cables will enable a Unimotor to be installed in an existing DS/MS application.

These cables are available in power (braked), power (un-braked) and signal (resolver). For part numbers see the table below.

Function	Motor	CTD Order code for Digitax drive	CTD Order code for Unidrive SP/ Digitax ST
Resolver	75 -142 DS to DM motor	SRBAZB	SRBAZB
Power UNBR	75 – 95 DS to DM motor	PSBGYA	PSBGYA-SOE
Power BRKD	75 – 95 DS to DM motor	PBBGYA	PBBGYA-SOE
Power UNBR	115 – 142 DS to DM motor	PSBAZA	PSBAZA-SOE
Power BRKD	115 – 142 DS to DM motor	PBBAZA	PBBAZA-SOE

The conversion cables will be a fixed length of 400mm and will not require the cable length as part of the order code.

The conductor size is fixed at 1.5mm for the 75-95 motors and 2.5mm for the 115-142 motors.

They are only available in the DESINA colours of Orange for power and Green for signal.

Below is a picture of the new conversion cables, power braked at the top then power un-braked then signal.

DutymAx DS/MS to Unimotor conversions

The DutymAx DS/MS range of motors was made obsolete during 2007 and to allow customers to swap out these motors the following information has been produced.

The old DigitAx and MaxAx drives and the Undrive classic/Unidrive SP drive have a different notation for the U and V power terminals which means that motors have to be wired in a certain way for a forward rotation on each drive.

The DutymAx DS motors were wired and setup for operation with the old DigitAx drive and the DutymAx MS motors were wired and setup for operation with the MaxAx drive.

The Unimotor UM, fm and hd motors are wired and setup for operation with the Unidrive classic and Unidrive SP drive.

DutymAx DS motors to Unimotor classic (DM)

To allow a Unimotor classic to be used with the DigitAx drive use a Unimotor DM motor and conversion cables for CTD motor codes DM/SQH. The resolver offset position will be set correctly.

75DSA300CAAAA ----- 75DMA300CAAAA

DutymAx DS motors to Unimotor fm (U2)

To allow a Unimotor U2 to be used with the DigitAx drive use conversion cables for CTD motor codes U2, and then the Unimotor U2 must be re auto tuned to a new zero offset position before running.

75DSA300CAAAA ----- 075U2A300CAAEA075110

DutymAx MS motors to Unimotor classic (-SQH)

To allow a Unimotor classic to be used with the MaxAx drive use a Special Unimotor classic

-SQH and conversion cables for CTD motor codes DM/SQH. The resolver offset position will be set correctly.

75MSA300CAAAA ----- 75EZA300CAAAA-SQH

DutymAx MS motors to Unimotor fm

Currently there is no Unimotor fm offering.

Note:

If a customer requires a replacement motor fitted with Hybrid box, to work with a DigitAx/MaxAx drive, the Unimotor DM/SQH will continue to be the recommended offering from CTDynamics. Unimotor fm does not have a hybrid box option.

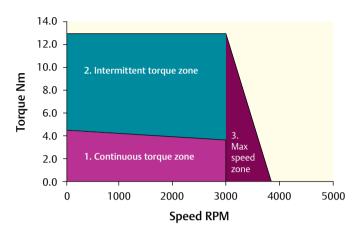
The Unimotor DM/SQH does have a 125 °C rating so all resolver motor performances are rated the same as a DS/MS motor. Unimotor fm has a 100 °C rating so the performance will be reduced.

All front flange mounting dimensions and shaft dimensions remain the same for DS/MS and DM/SQH/U2 motors, but the motor length will vary.

Please check relevant brochure for details.

Conversion cables

(For conversion cable details see Tech Note CTD031101)


Function	CTD motor DS/MS	Conversion cables for CTD motor code DM/SQH	Conversion cables for CTD motor code U2
Resolver	75 -142	SRBAZB	SRBAZB
Power UNBR	75 – 95	PSBGYA	PSBGYA-SOE
Power BRKD	75 – 95	PBBGYA	PBBGYA-SOE
Power UNBR	115 – 142	PSBAZA	PSBAZA-SOE
Power BRKD	115 – 142	PBBAZA	PBBAZA-SOE

6 Performance graphs

The torque speed graph depicts the limits of operation for a given motor. The limits of operation are shown for three categories.

Torque/speed graph

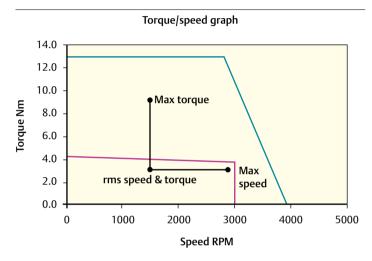
1. Continuous or rms torque zone

This area gives the effective continuous or rms torque available for repetitive torque sequences. Continuous or rms torque must be within this area otherwise the motor may overheat and cause the system to trip out.

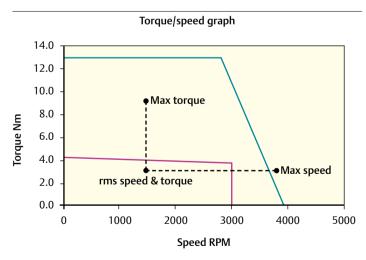
2. Intermittent or peak torque zone

Above the continuous zone is the intermittent zone where the motor may be safely operated for short periods of time. Operation within the intermittent zone is permissible provided that the defined peak torque limit is not exceeded. On some frame sizes the peak torque factor of 3 x stall current only applies up to a certain percentage level of rms current before it starts to reduce.

Please refer to the Standard (2) peak torque section for details.


Maximum peak torque is the upper limit of the intermittent zone and must never be exceeded, to do so will damage the motor.

3. Maximum speed zone

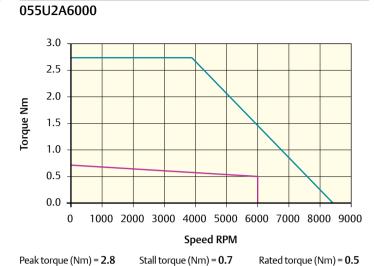

To the right of the graph is a sloping line depicting the maximum motor speed when using a 200V/400V drive supply. The speed limit line is dependent upon the motor windings, and the voltage supplied to the drive. Operation within the maximum speed zone is permissible as long as the maximum speed limit is not exceeded. If the speed is increased beyond the limit shown, the motors sinusoidal waveform would have insufficient voltage and will clip and distort, causing inefficiency and higher temperature. If the distortion increases further, the drive may loose control of the motor and trip.

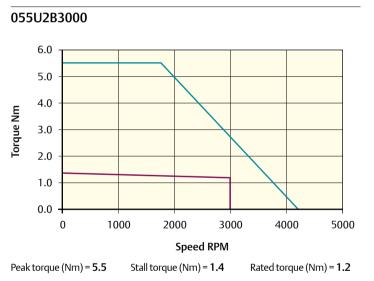
Plotting an operating point

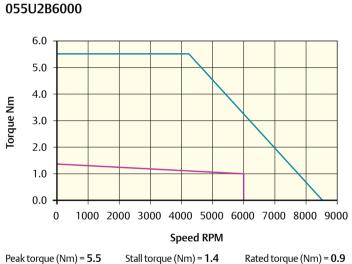
To estimate whether a motor is the correct choice for a given system, it is necessary to calculate or measure the rms torque and the rms speed for a given system in its normal continual stop/start sequenced mode. These operating points may be plotted on the torque speed graph. As shown in the first graph below, if the rms speed and torque point lies well within the continuous zone, then the motor is suitable for the application. The second graph below shows the max speed has increased to 3900rpm and this is now outside the safe area and another speed motor must be selected.

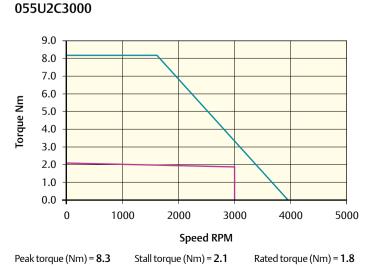
Max torque = 10Nm: Max speed = 2900 rms torque = 3Nm: rms speed = 1500

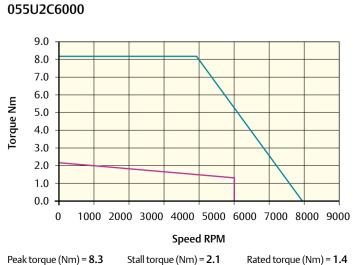
Max torque = 10Nm: Max speed = 3900 rms torque = 3Nm: rms speed = 1500

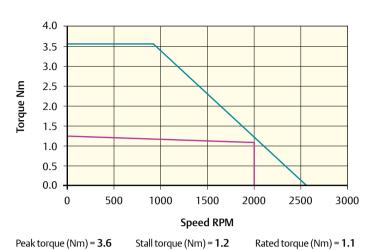

6.1 Unimotor fm

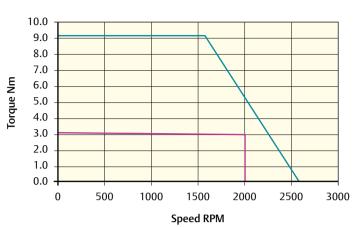

Peak torque (Nm) = 2.8

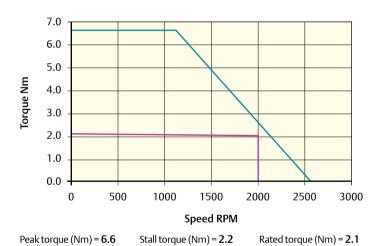

055U2A3000 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Speed RPM


Stall torque (Nm) = 0.7

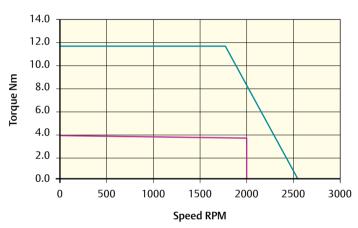

Rated torque (Nm) = 0.6





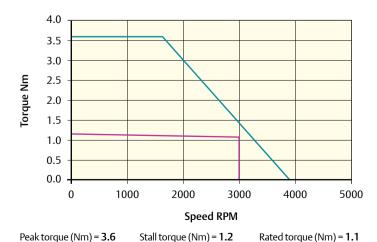


075U2C2000

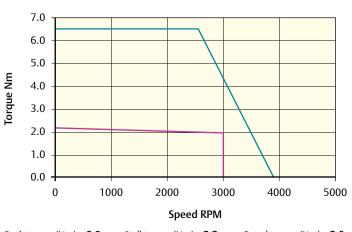


Peak torque (Nm) = 9.3 Stall torque (Nm) = 3.1 Rated torque (Nm) = 3.0

075U2B2000



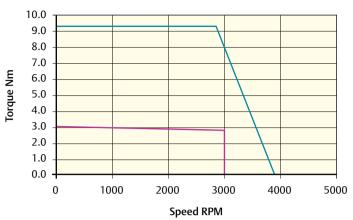
075U2D2000



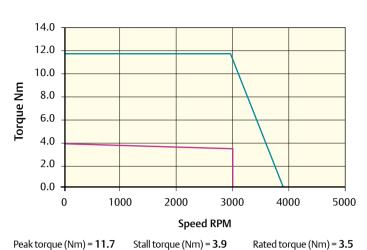
Peak torque (Nm) = 11.7 Stall torque (Nm) = 3.9 Rated torque (Nm) = 3.8

075U2A3000

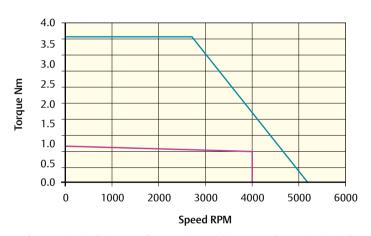
075U2B3000



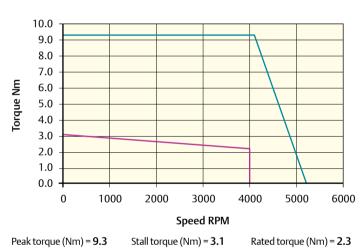
Peak torque (Nm) = **6.6** Stall torque (Nm) = **2.2** Rated torque (Nm) = **2.0**


[■] Continuous zone ■ Intermittent zone All graphs are a 40°C ambient and 400V drive supply

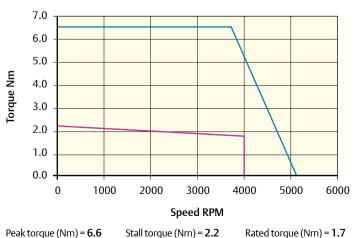
075U2C3000


075U2D3000

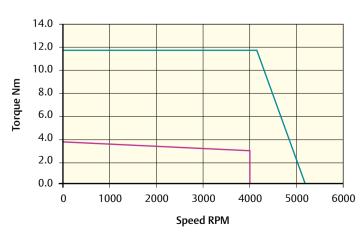
Stall torque (Nm) = 3.9


Peak torque (Nm) = 9.3 Stall torque (Nm) = 3.1 Rated torque (Nm) = 2.8

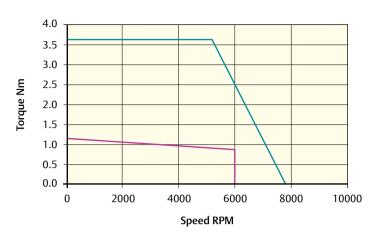
075U2A4000


075U2C4000

Peak torque (Nm) = 11.7

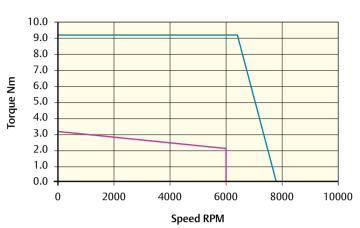

Peak torque (Nm) = 3.6 Stall torque (Nm) = 1.2 Rated torque (Nm) = 1.0

075U2B4000


Rated torque (Nm) = 1.7

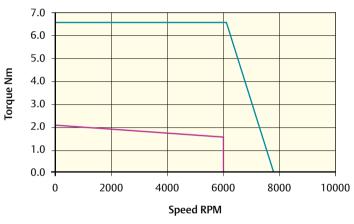
075U2D4000

Peak torque (Nm) = 11.7 Stall torque (Nm) = 3.9 Rated torque (Nm) = 2.9



Stall torque (Nm) = 1.2

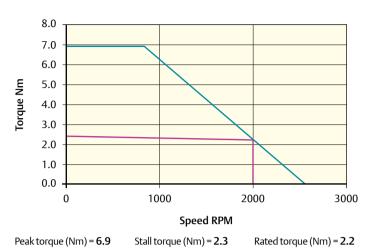
Rated torque (Nm) = 0.9


075U2C6000

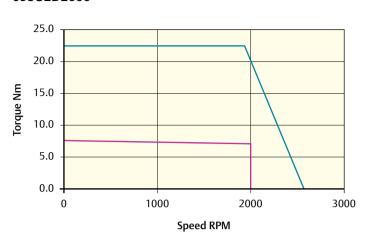
Peak torque (Nm) = 9.3 Stall torque (Nm) = 3.1 Rated torque (Nm) = 2.1


075U2B6000

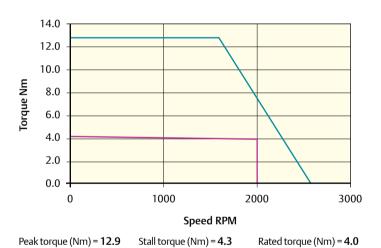
Peak torque (Nm) = 3.6


Peak torque (Nm) = 6.6 Stall torque (Nm) = 2.2 Rated torque (Nm) = 1.6

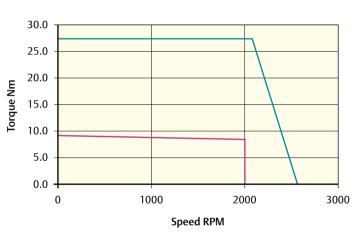
075U2D6000



Peak torque (Nm) = 11.7 Stall torque (Nm) = 3.9 Rated torque (Nm) = 2.6

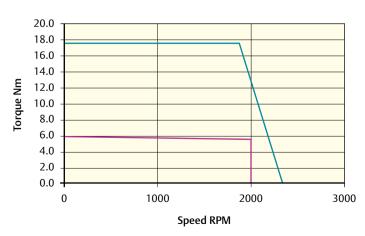


095U2D2000

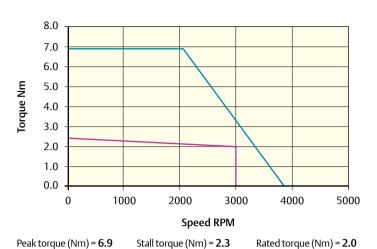


Peak torque (Nm) = 22.5 Stall torque (Nm) = 7.5 Rated torque (Nm) = 6.9

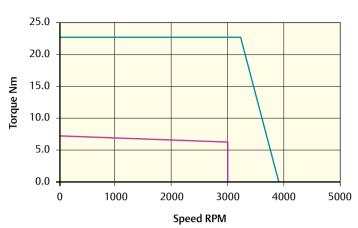
095U2B2000



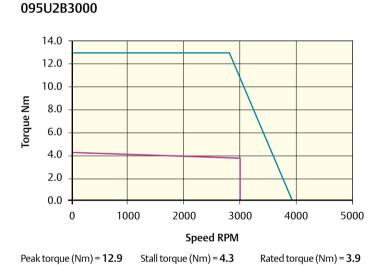
095U2E2000

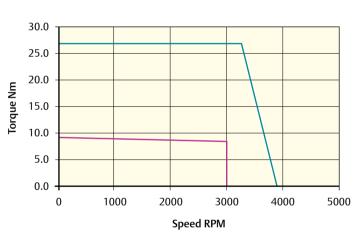

Peak torque (Nm) = 27.0 Stall torque (Nm) = 9.0 Rated torque (Nm) = 8.2

095U2C2000



Peak torque (Nm) = 17.7 Stall torque (Nm) = 5.9 Rated torque (Nm) = 5.5

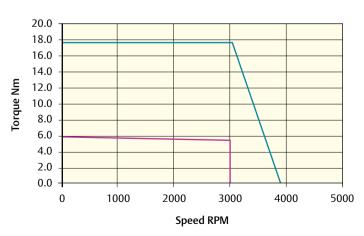

095U2D3000


Peak torque (Nm) = 22.5

Stall torque (Nm) = 7.5

Rated torque (Nm) = 6.8

095U2E3000

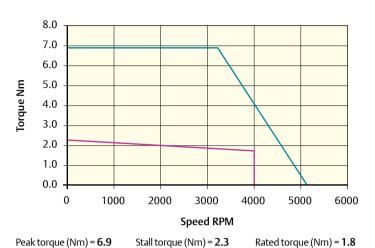


Peak torque (Nm) = 27.0

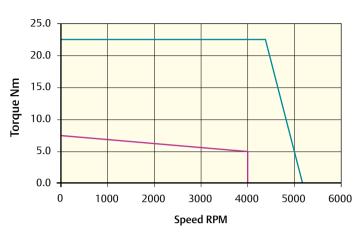
Stall torque (Nm) = 9.0

Rated torque (Nm) = 8.1

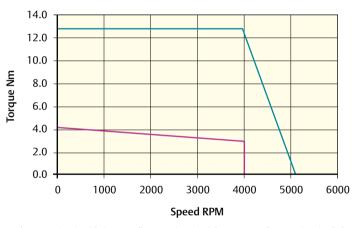
095U2C3000



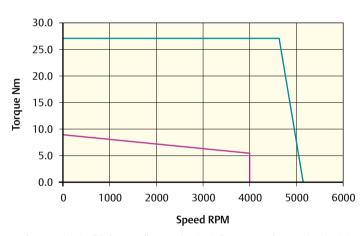
Peak torque (Nm) = 17.7


Stall torque (Nm) = 5.9

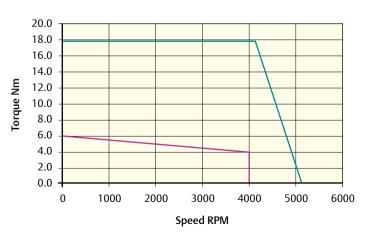
Rated torque (Nm) = 5.4



095U2D4000


Peak torque (Nm) = 22.5 Stall torque (Nm) = 7.5 Rated torque (Nm) = 4.9

095U2B4000

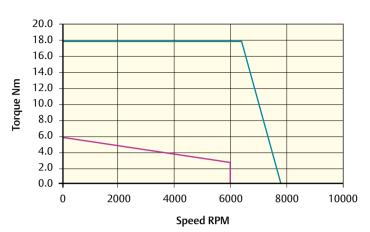

Peak torque (Nm) = 12.9 Stall torque (Nm) = 4.3 Rated torque (Nm) = 3.0

095U2E4000

Peak torque (Nm) = 27.0 Stall torque (Nm) = 9.0 Rated torque (Nm) = 5.7

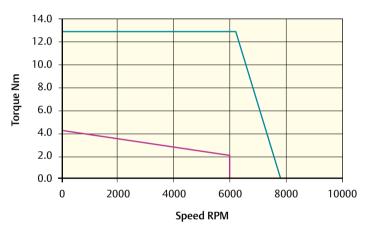
095U2C4000

Peak torque (Nm) = 17.7 Stall torque (Nm) = 5.9 Rated torque (Nm) = 4.0



Peak torque (Nm) = **6.9** St

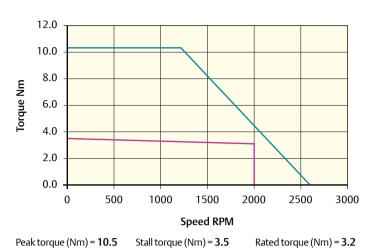
Stall torque (Nm) = 2.3


Rated torque (Nm) = 1.3

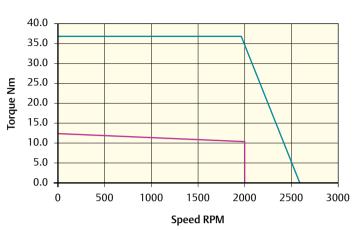
095U2C6000

Peak torque (Nm) = 17.7 Stall torque (Nm) = 5.9 Rated torque (Nm) = 2.8

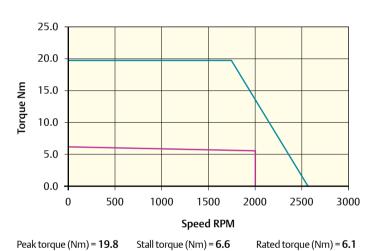
095U2B6000



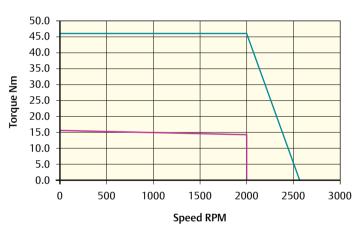
Peak torque (Nm) = 12.9


Stall torque (Nm) = 4.3

Rated torque (Nm) = 2.1

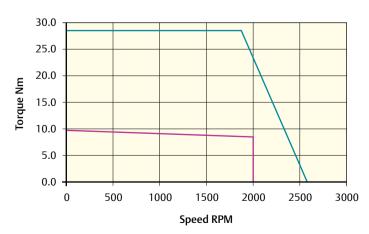


115U2D2000

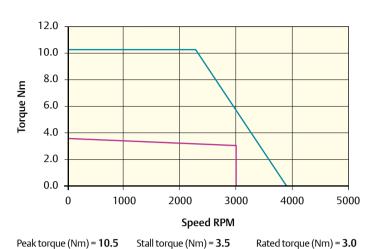


Peak torque (Nm) = 37.2 Stall torque (Nm) = 12.4 Rated torque (Nm) = 10.8

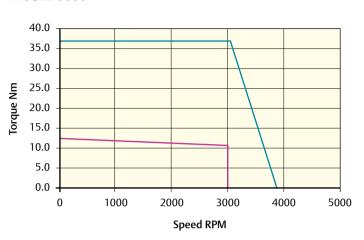
115U2B2000



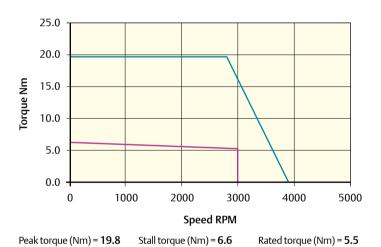
115U2E2000


Peak torque (Nm) = 45.9 Stall torque (Nm) = 15.3 Rated torque (Nm) = 14.0

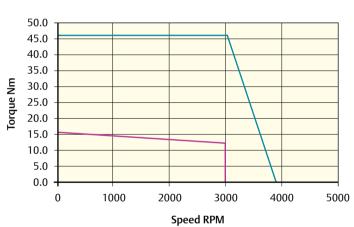
115U2C2000



Peak torque (Nm) = 28.2 Stall torque (Nm) = 9.4 Rated torque (Nm) = 8.7

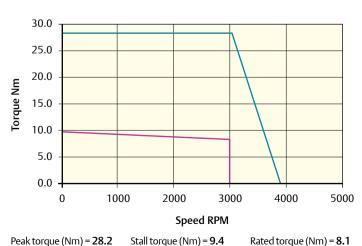


115U2D3000



Peak torque (Nm) = 37.4 Stall torque (Nm) = 12.4 Rated torque (Nm) = 10.4

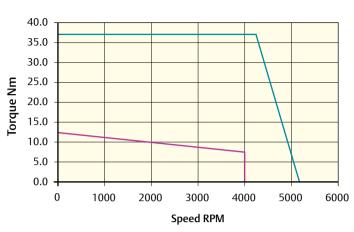
115U2B3000



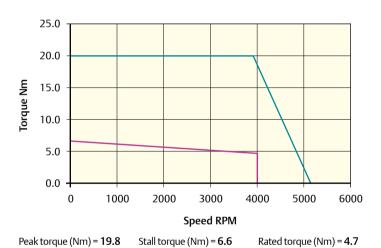
115U2E3000

Stall torque (Nm) = 15.3 Rated torque (Nm) = 12.6 Peak torque (Nm) = 45.9

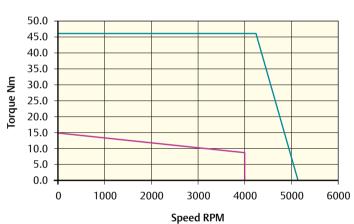
115U2C3000



Rated torque (Nm) = 8.1

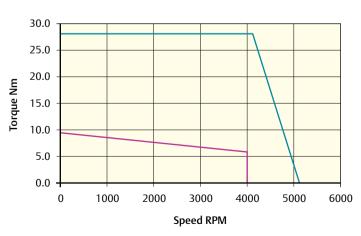


115U2D4000



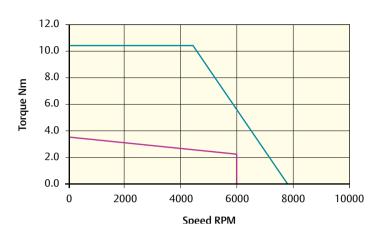
Peak torque (Nm) = 37.2 Stall torque (Nm) = 12.4 Rated torque (Nm) = 7.5

115U2B4000

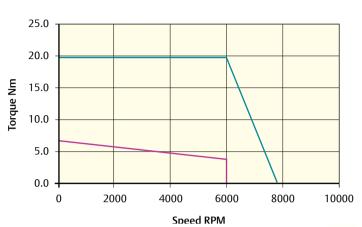


115U2E4000

Peak torque (Nm) = 45.9 Stall torque (Nm) = 15.3 Rated torque (Nm) = 8.7


115U2C4000

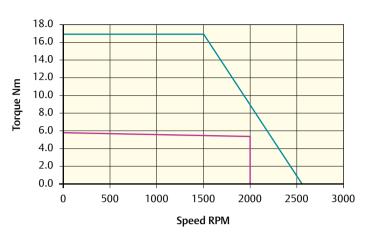
Peak torque (Nm) = 28.2 Stall torque (Nm) = 9.4 Rated torque (Nm) = 6.3


Peak torque (Nm) = 10.5

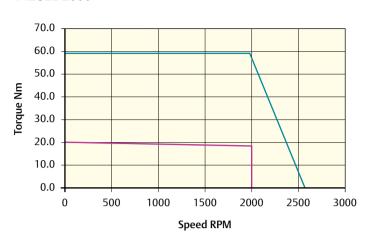
Stall torque (Nm) = 3.5

Rated torque (Nm) = 2.2

115U2B6000

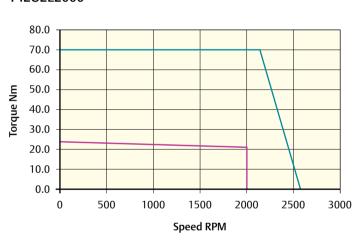


Peak torque (Nm) = 19.8 Stall torque (Nm) = 6.6


Rated torque (Nm) = 4.0

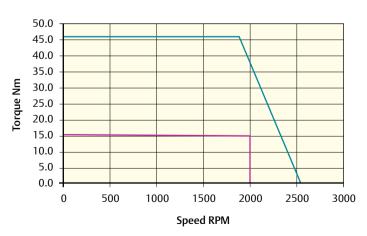


142U2D2000

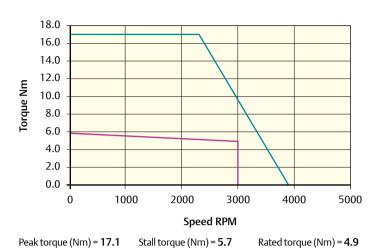


Peak torque (Nm) = 17.1 Stall torque (Nm) = 5.7 Rated torque (Nm) = 5.3 Peak torque (Nm) = 59.4 Stall torque (Nm) = 19.8 Rated torque (Nm) = 18.4

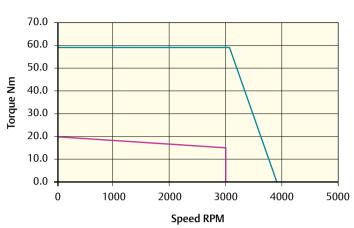
142U2B2000



142U2E2000

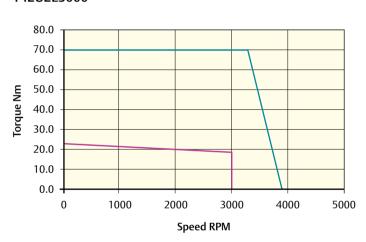

Peak torque (Nm) = 32.4 Stall torque (Nm) = 10.8 Rated torque (Nm) = 10.3 Peak torque (Nm) = 70.4 Stall torque (Nm) = 23.4 Rated torque (Nm) = 21.3

142U2C2000



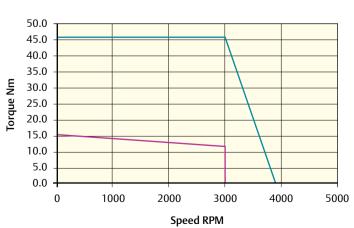
Peak torque (Nm) = 45.9 Stall torque (Nm) = 15.3 Rated torque (Nm) = 14.6

142U2D3000

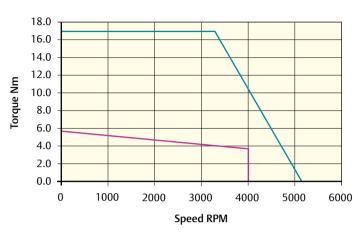


Peak torque (Nm) = **59.4** Stall torque (Nm) = **19.8** Rated torque (Nm) = **15.8**

142U2B3000

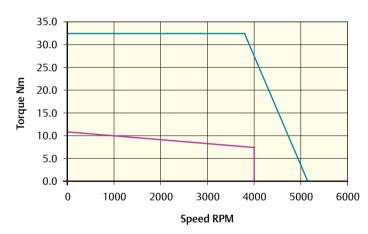


142U2E3000

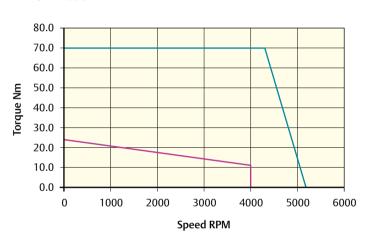

Peak torque (Nm) = 70.2 Stall torque (Nm) = 23.4 Rated torque (Nm) = 18.0

142U2C3000

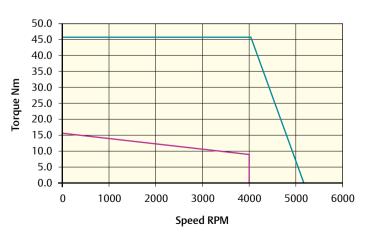
Peak torque (Nm) = 45.9 Stall torque (Nm) = 15.3 Rated torque (Nm) = 12.2


Peak torque (Nm) = 17.1 Stall torque (Nm) = 5.7 Rated torque (Nm) = 3.6

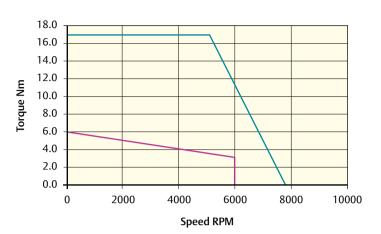
142U2D4000


Peak torque (Nm) = 59.4 Stall torque (Nm) = 19.8 Rated torque (Nm) = 10.7

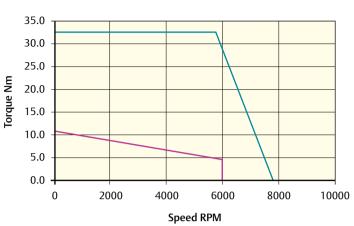
142U2B4000


Peak torque (Nm) = 32.4 Stall torque (Nm) = 10.8 Rated torque (Nm) = 7.0

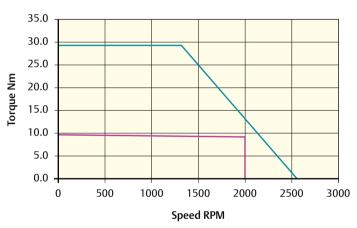
142U2E4000

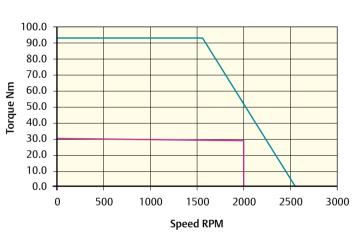

Peak torque (Nm) = 70.2 Stall torque (Nm) = 23.4 Rated torque (Nm) = 12.2

142U2C4000


Peak torque (Nm) = 45.9 Stall torque (Nm) = 15.3 Rated torque (Nm) = 8.9

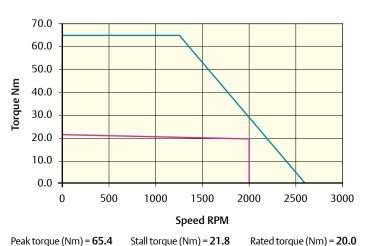
Stall torque (Nm) = 5.7


142U2B6000

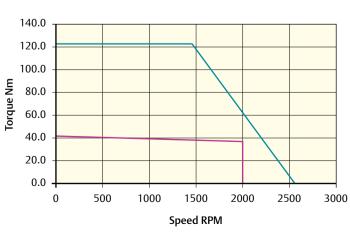

Peak torque (Nm) = 32.4 Stall torque (Nm) = 10.8 Rated torque (Nm) = 4.5

190U2A2000

Peak torque (Nm) = 17.1



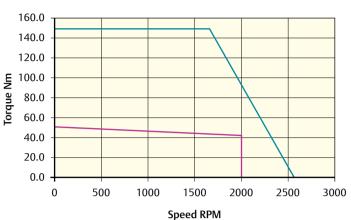
Rated torque (Nm) = 2.9



Peak torque (Nm) = 28.2 Stall torque (Nm) = 9.6 Rated torque (Nm) = 9.3 Peak torque (Nm) = 93.3 Stall torque (Nm) = 31.1 Rated torque (Nm) = 28.4

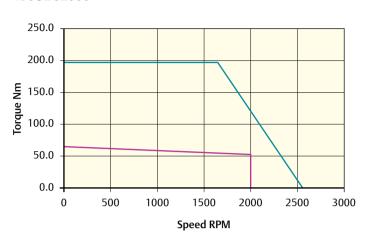
190U2B2000

190U2D2000

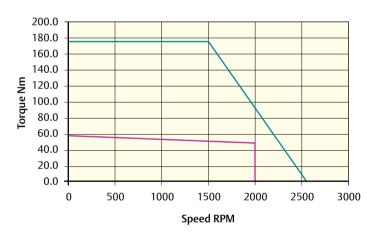


Peak torque (Nm) = 123.3 Stall torque (Nm) = 41.1 Rated torque (Nm) = 36.9

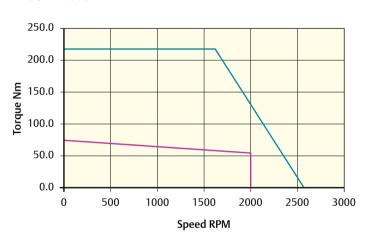
■ Continuous zone ■ Intermittent zone All graphs are a 40°C ambient and 400V drive supply



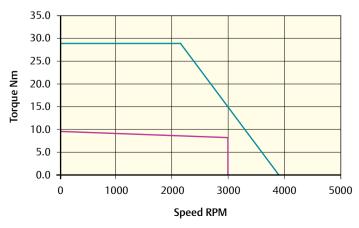
190U2E2000


Peak torque (Nm) = **151.6** Stall torque (Nm) = **50.6** Rated torque (Nm) = **43.8**

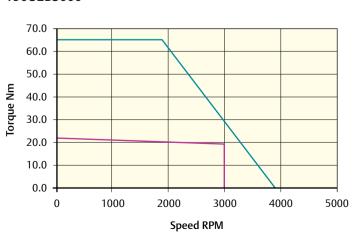
190U2G2000


Peak torque (Nm) = 198.0 Stall torque (Nm) = 66.0 Rated torque (Nm) = 53.0

190U2F2000

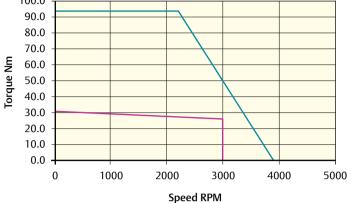

Peak torque (Nm) = 176.1 Stall torque (Nm) = 58.7 Rated torque (Nm) = 50.4

190U2H2000

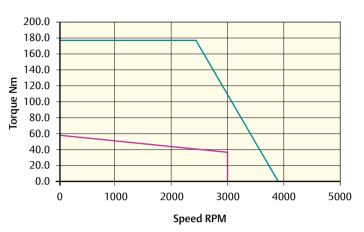

Peak torque (Nm) = 219.6 Stall torque (Nm) = 73.2 Rated torque (Nm) = 54.7

190U2A3000

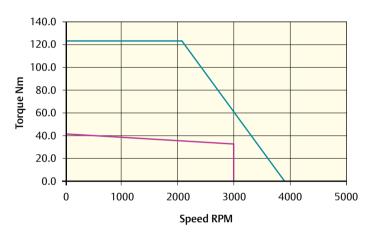
Peak torque (Nm) = 28.8 Stall torque (Nm) = 9.6 Rated torque (Nm) = 8.7


190U2B3000

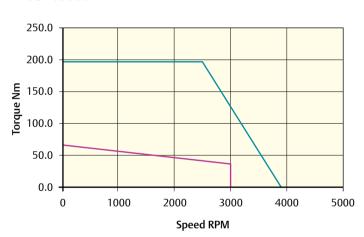
Peak torque (Nm) = 65.4 Stall torque (Nm) = 21.8 Rated torque (Nm) = 19.5



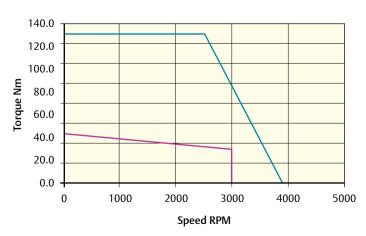
190U2C3000 100.0 90.0 80.0


Peak torque (Nm) = 93.3 Stall torque (Nm) = 31.1 Rated torque (Nm) = 25.0

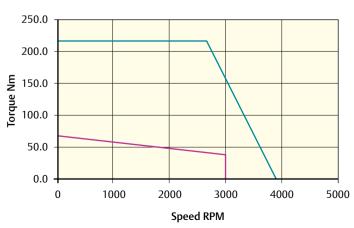
190U2F3000


Peak torque (Nm) = 176.1 Stall torque (Nm) = 58.7 Rated torque (Nm) = 35.0

190U2D3000

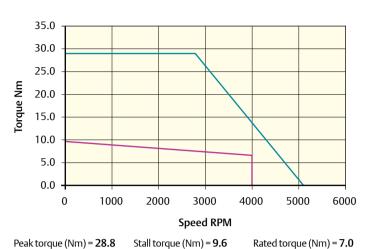

Peak torque (Nm) = 123.3 Stall torque (Nm) = 41.1 Rated torque (Nm) = 33.0

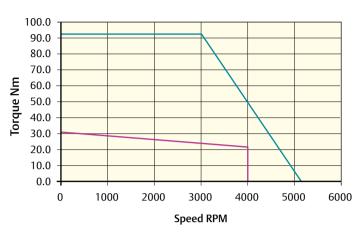
190U2G3000


Peak torque (Nm) = 198.0 Stall torque (Nm) = 66.0 Rated torque (Nm) = 36.0

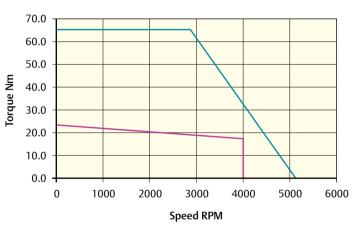
190U2E3000

Peak torque (Nm) = 151.6 Stall torque (Nm) = 50.6 Rated torque (Nm) = 34.0

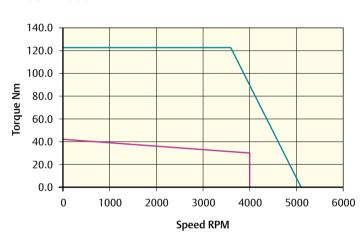

190U2H3000


Peak torque (Nm) = 219.6 Stall torque (Nm) = 73.2 Rated torque (Nm) = 36.8

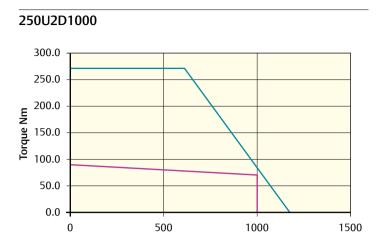
■ Continuous zone ■ Intermittent zone All graphs are a 40°C ambient and 400V drive supply



190U2C4000

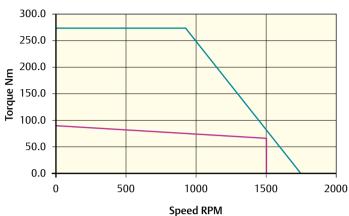

Peak torque (Nm) = 93.3 Stall torque (Nm) = 31.1 Rated torque (Nm) = 21.5

190U2B4000

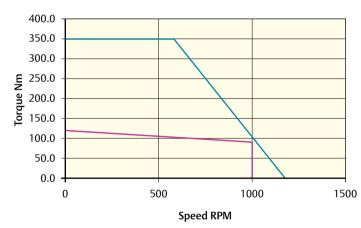

Peak torque (Nm) = 65.4 Stall torque (Nm) = 21.8 Rated torque (Nm) = 17.5

190U2D4000

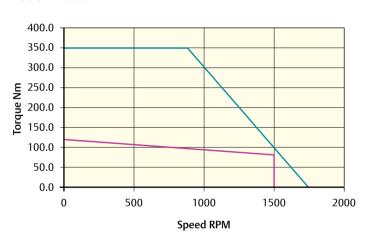
Peak torque (Nm) = 123.3 Stall torque (Nm) = 41.1 Rated torque (Nm) = 29.0



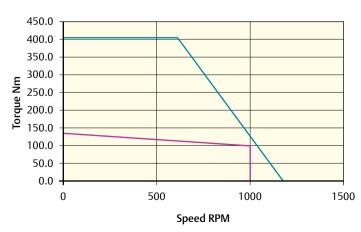
$Peak torque (Nm) = 276.0 \quad Stall torque (Nm) = 92.0 \quad Rated torque (Nm) = 75.0$


Speed RPM

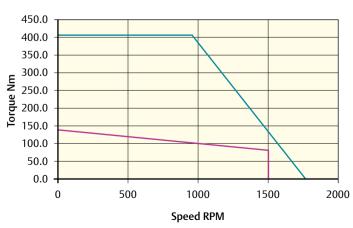
250U2D1500


Peak torque (Nm) = 276.0 Stall torque (Nm) = 92.0 Rated torque (Nm) = 67.0

250U2E1000


Peak torque (Nm) = 348.0 Stall torque (Nm) = 116.0 Rated torque (Nm) = 92.0

250U2E1500


Peak torque (Nm) = 348.0 Stall torque (Nm) = 116.0 Rated torque (Nm) = 76.0

250U2F1000

Peak torque (Nm) = 408.0 Stall torque (Nm) = 136.0 Rated torque (Nm) = 106.0

250U2F1500

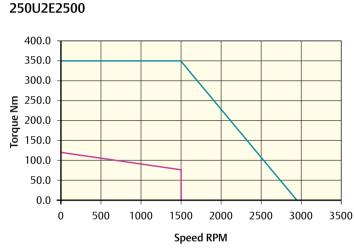
Peak torque (Nm) = 408.0 Stall torque (Nm) = 136.0 Rated torque (Nm) = 84.0

[■] Continuous zone ■ Intermittent zone All graphs are a 40°C ambient and 400V drive supply

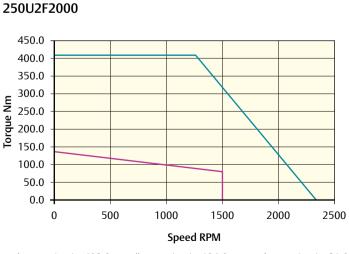
250U2D2000 250.0 200.0 150.0 0 50.0 1000 1500 2000 2500

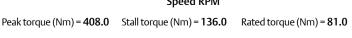
Peak torque (Nm) = 276.0 Stall torque (Nm) = 92.0 Rated torque (Nm) = 65.0

Speed RPM


250U2D2500 300.0 250.0 200.0 Torque Nm 150.0 100.0 50.0 0.0 500 1000 1500 0 2000 2500 3000 3500

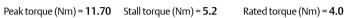
Peak torque (Nm) = 276.0 Stall torque (Nm) = 92.0 Rated torque (Nm) = 62.0

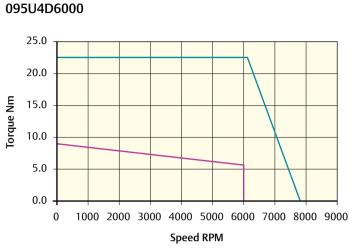

Speed RPM


250U2E2000 450.0 400.0 350.0 300.0 Torque Nm 250.0 200.0 150.0 100.0 50.0 0.0 0 500 1000 1500 2000 2500 Speed RPM

Peak torque (Nm) = 348.0 Stall torque (Nm) = 116.0 Rated torque (Nm) = 73.0

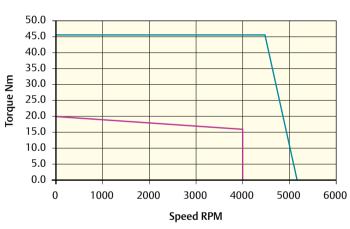
Peak torque (Nm) = 348.0 Stall torque (Nm) = 116.0 Rated torque (Nm) = 70.0




eak torque (Niii) – 406.0 Stail torque (Niii) – 136.0 Kated torque (Niii) – 77.0

6.2 Unimotor fm fan blown

075U4D6000 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Speed RPM

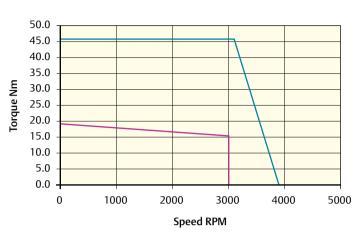


Peak torque (Nm) = 22.50 Stall torque (Nm) = 9.0 Rated torque (Nm) = 5.8

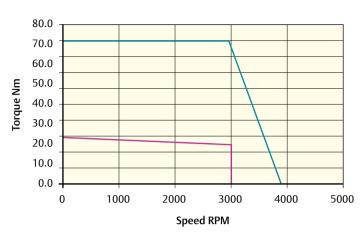
115U4E4000

115U4D4000 40.0 35.0 30.0 25.0 **Torque Nm** 20.0 15.0 10.0 5.0 0.0 0 1000 2000 3000 4000 5000 6000 Speed RPM

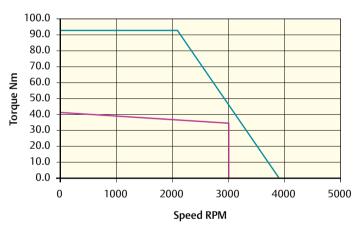
Peak torque (Nm) = 37.20 Stall torque (Nm) = 15.2 Rated torque (Nm) = 12.0



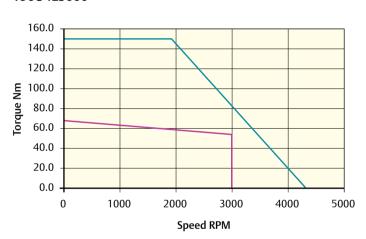
Peak torque (Nm) = 45.90 Stall torque (Nm) = 20.1 Rated torque (Nm) = 16.1



142U4C3000


Peak torque (Nm) = 45.90 Stall torque (Nm) = 18.90 Rated torque (Nm) = 16.1

142U4E3000

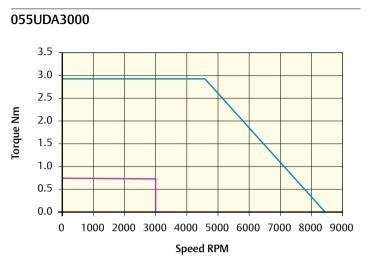

Peak torque (Nm) = 70.20 Stall torque (Nm) = 29.5 Rated torque (Nm) = 25.0

190U4C3000

Peak torque (Nm) = **93.30** Stall torque (Nm) = **41.0** Rated torque (Nm) = **35.5**

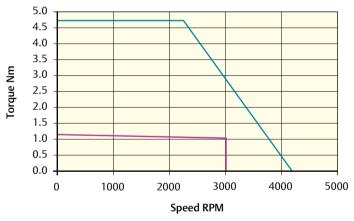
190U4E3000

Peak torque (Nm) = 151.6 Stall torque (Nm) = 68.0 Rated torque (Nm) = 55.0


190U4F2000

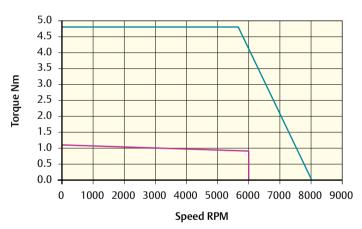
Peak torque (Nm) = 176.10 Stall torque (Nm) = 79.0 Rated torque (Nm) = 66.5

6.3 Unimotor hd

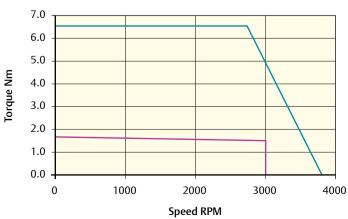


Peak torque (Nm) = 2.88 Stall torque (Nm) = 0.72 Rated torque (Nm) = 0.70

055UDA6000 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Speed RPM

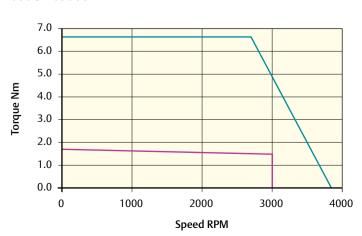

Peak torque (Nm) = 2.88 Stall torque (Nm) = 0.72 Rated torque (Nm) = 0.68

055UDB3000


Peak torque (Nm) = 4.72 Stall torque (Nm) = 1.18 Rated torque (Nm) = 1.05

055UDB6000

Peak torque (Nm) = 4.72 Stall torque (Nm) = 1.18 Rated torque (Nm) = 0.90


055UDC3000

Peak torque (Nm) = **6.60** Stall torque (Nm) = **1.65**

Rated torque (Nm) = 1.48

055UDC3000

Peak torque (Nm) = 6.60

Stall torque (Nm) = 1.65

Rated torque (Nm) = 1.48

067UDA3000 5.0 4.5 4.0 3.5 Torque Nm 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

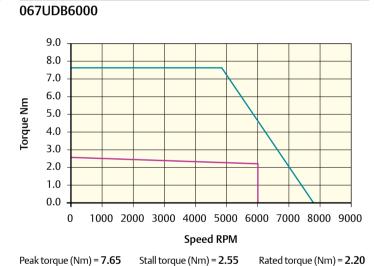
Peak torque (Nm) = 4.35 Stall torque (Nm) = 1.45 Rated torque (Nm) = 1.40

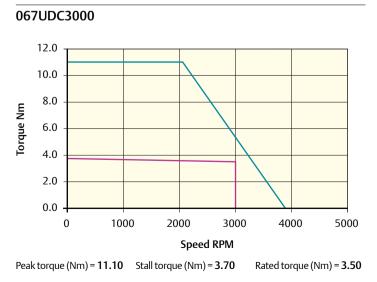
Speed RPM

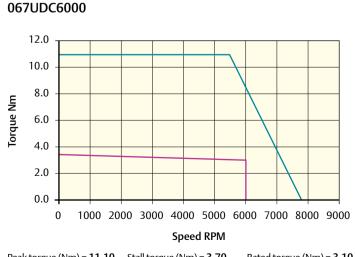
5.0 4.5 4.0 3.5 **Torque Nm** 3.0 2.5 2.0 1.5 1.0 0.5 0.0

067UDA6000

0

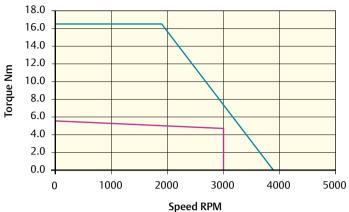

Stall torque (Nm) = 1.45 Rated torque (Nm) = 1.30 Peak torque (Nm) = 4.35

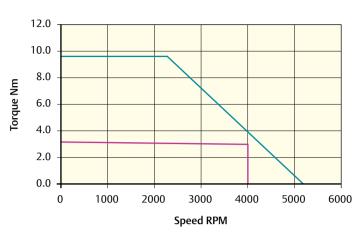

1000 2000 3000 4000 5000 6000 7000 8000 9000


Speed RPM

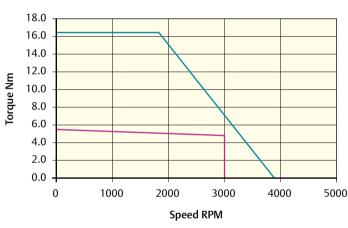
067UDB3000 9.0 8.0 7.0 6.0 **Torque Nm** 5.0 4.0 3.0 2.0 1.0 0.0 1000 2000 0 3000 4000 5000 Speed RPM

Peak torque (Nm) = 7.65 Stall torque (Nm) = 2.55 Rated torque (Nm) = 2.45

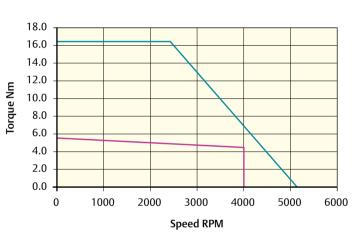




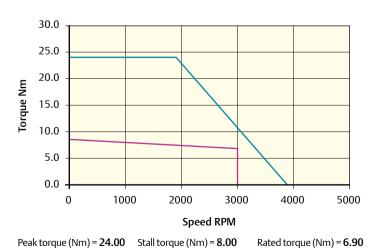
Stall torque (Nm) = 3.20


089UDA4000

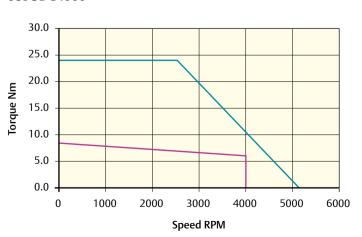
Peak torque (Nm) = **9.60** Stall torque (Nm) = **3.20** Rated torque (Nm) = **2.90**


089UDB3000

Peak torque (Nm) = 9.60

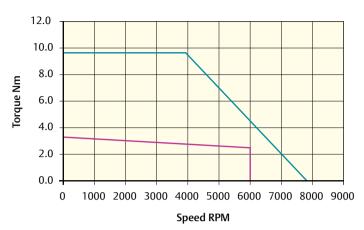

089UDB4000

Rated torque (Nm) = 3.00

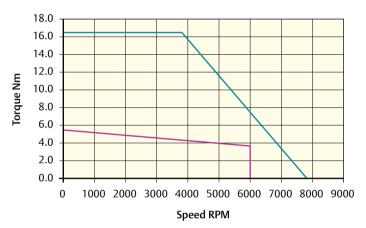


Peak torque (Nm) = 16.50 Stall torque (Nm) = 5.50 Rated torque (Nm) = 4.85 Peak torque (Nm) = 16.50 Stall torque (Nm) = 5.50 Rated torque (Nm) = 4.55

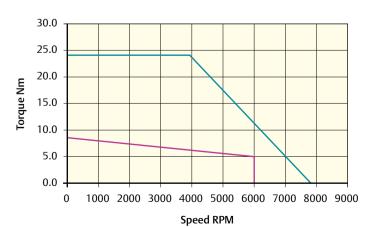
089UDC3000


089UDC4000

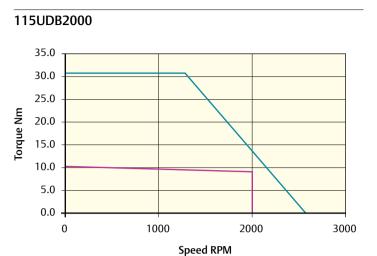
Peak torque (Nm) = 24.00 Stall torque (Nm) = 8.00 Rated torque (Nm) = 6.35



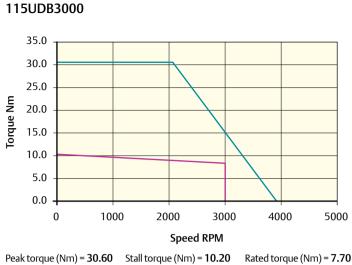
089UDA6000

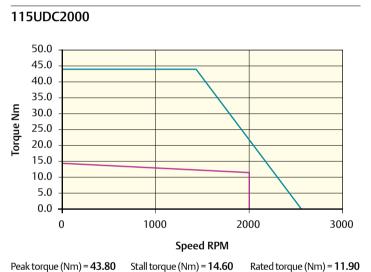

Peak torque (Nm) = 9.60 Stall torque (Nm) = 3.20 Rated torque (Nm) = 2.65

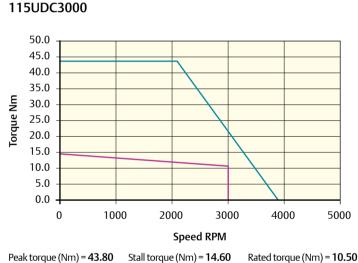
089UDB6000

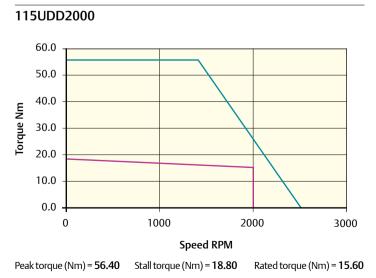

Peak torque (Nm) = 16.50 Stall torque (Nm) = 5.50 Rated torque (Nm) = 3.80

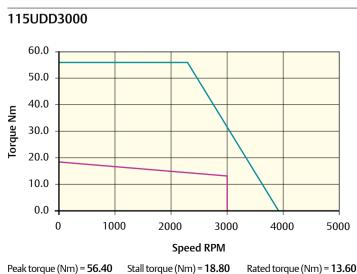
089UDC6000

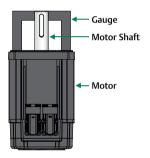

Peak torque (Nm) = 24.00 Stall torque (Nm) = 8.00 Rated torque (Nm) = 5.00






Rated torque (Nm) = 8.60

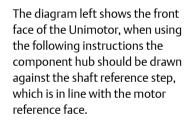

Peak torque (Nm) = 30.60 Stall torque (Nm) = 10.20

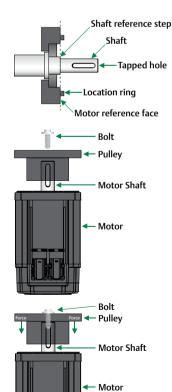

7 Pulley installation

Large numbers of motors returned for repair have the shafts "knocked back" into the motor. This can be caused by the incorrect fitting of pulleys and coupling etc. to the motor shaft.

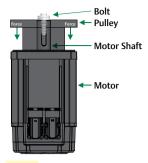
This incorrect fitting of pulleys and gears will at least cause damage to the front bearing, reducing the motors working life. In the worst case damage to the encoder (broken disc), or misalignment the resolver rotor will cause the motor to fail immediately.

This section is intended to explain the correct way of fitting parts to the shaft without causing damage. These instructions should be followed in all cases.


When the motor is built in production a go/no-go gauge, which is made to the minimum shaft extension dimension, is used to check that the shaft is correctly placed within the motor housing. This gauge is placed over the shaft and a check is made to ensure that the shaft is fitted correctly.


When a motor is returned from the field this gauge is used once more.

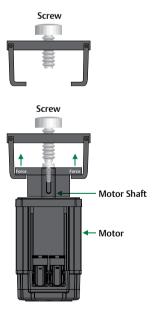
If the shaft has been "knocked back" then it is very quickly noticeable using this check.


For a pulley or gear to be fitted correctly the following procedure must be followed:

When fitting a pulley, a system that pushes the pulley down the shaft while pulling the shaft up through the pulley should be applied. A simple technique is to use a bolt with a washer.

Screw the bolt into the tapped hole of the shaft and, while holding the pulley, use it to push the pulley down and pull the shaft through at the same time.

Once the bolt has bottomed out unscrew it and place another washer underneath. Continue this process until the pulley is squeezed home.


Never hammer or force the pulley onto the shaft as this will result in damage to the bearing and or the encoder therefore reducing the life of the motor.

Note.

Circlips were removed from our rotors after an investigation into shafts snapping proved that the groves needed to fit the Circlips weakened the shaft.

Below is a table detailing the tapped hole sizes.

Frame Size	Tapped hole (mm)
55A-C	M4 x 10.0
75A	M4 x 10.0/12.0
74B-95A	M5 x 12.5/14.5
95B115C	M6 x 16.0/18.0
115D-142E	M8 x 19.0/21.0
190A-D	M12 x 28.8

To remove pulleys a two or three legged gear puller must be used.

This tool grips the outer trim of the pulley and, then using the threaded screw of the gear puller against the shaft, the pulley can be raised off the shaft without any force being applied to the motor.

A socket head screw should be screwed into the end of the shaft to protect the thread from damage.

Failure to apply these simple methods may render the motor useless or in need of repair.

8 Declarations

EC DECLARATION OF CONFORMITY

We, the manufacturer:

Control Techniques Dynamics Ltd. (part of Emerson Industrial Automation)

South Way, Walworth Industrial Estate, Andover, Hampshire SP10 5AB, United Kingdom

Tel: +44 (0) 1264 387 600 Fax: +44 (0) 1264 356 561

Certify and declare under our sole responsibility that the following products:

Name	Unimotor hd
Description	AC Brushless Permanent Magnet Electric Servo Motors
Catalogue numbers	067UDA******,067UDB******,067UDC******,089UDA*****,089UDB*****,089UDC*****,
	115UDA*******, 115UDB******, 115UDC******, 115UDD******, 067EDA*****, 067EDB******,
	067EDC*******,089EDA*******,089EDB*******,089EDC******,115EDA******,115UDB******,
	115EDC********, 115EDD*******

^{*} maybe any number or letter indicating motor options which do not affect this DoC.

Comply with the essential requirements and provisions of the Low Voltage Directive 2006/95/EC and of the EMC Directive 2004/108/EC based on the following specifications applied:

EU Harmonised Standards under directive 2006/95/EC: EN 60034-1:2004, EN 60034-5:2001, EN 60034-6:1993, EN 60034-7:1993,

EN 60034-8:2007, EN 60034-14:2004, EN 60204-1:2006

EU Harmonised Standards under directive 2004/108/EC: EN 61000-6-2:2005, EN 61000 -6-4:2007

Year of CE Marking: 2009

EC DECLARATION OF CONFORMITY

Manufacturers Name: Control Techniques Dynamics Limited

Manufacturers' Address: South Way, Walworth Industrial Estate, Andover, Hampshire, SP105AB

Declare under our sole responsibility that the Brushless Permanent Magnet Servo Motors described below comply with applicable Health and Safety Requirements of Annex I of the Low Voltage Directive 2006/95/EC and Annex II of the ATEX Directive 94/9/EC and the EMC Directive 2004/108/EC. Confidential technical documentation has been compiled according to the specific requirements of each directive:

Description of product: Brushless Permanent Magnet Servo Motors Types 480V U2, UM/SL, UD 220V E2, EZ, ED.

Standard rating: Frame Size 067 to 250, 480V AC, 11.6 kW maximum, Speed 0-6000 RPM, Thermal Classification: Delta 100°C.

ATEX rating: Unimotor UM and fm frame size 075 to 190, 480V AC, 11.6 kW maximum, Speed 0-3000 RPM, Thermal

Classification: Delta 100°C.

Atex Gas Atex Dust

Ex II 3 G Ex pz T3 (0<Ta<40°C) BSI 09 ATEX 546579X

(Ex) Ex II 3 D Ex tD A22 IP65 T 200°C BSI 09 ATEX 546579X

The following standards have either been referred to or have been complied with in part or in full:

Reference	Title	
EN 60034-1:2004	Rotating electrical machines – Part 1: Rating and performance	
EN 60034-5:2001	Rotating electrical machines – Part 5: IP Code	
EN 60034-6:1993	Rotating electrical machines – Part 6: IC Rating	
EN 60034-7:1993	Rotating electrical machines – Part 7: IM Rating	
EN 60034-8:2007	Rotating electrical machines – Part 8: Terminal markings and direction of rotation	
EN 60034-14:2004	Rotating electrical machines – Part 14: Mechanical vibration	
EN 60204-1:2006	Safety of machinery – Electrical equipment of machines Part1: General requirements	
EN 60079-0:2006	Electrical apparatus for explosive gas atmospheres – general requirements	
EN 60079-2:2007	Electrical apparatus for explosive gas atmospheres – pressurised enclosures "p"	
EN 61241-0:2006	Electrical apparatus for use in the presence of combustible dust – general requirements	
EN 61241-1:2004	Electrical apparatus for use in the presence of combustible dust - Part 1: Protection by enclosures "tD"	

Signed

Control Techniques Dynamics Ltd.

South Way, Walworth Industrial Estate, Andover, Hampshire SP10 5AB,

United Kingdom

Keith Hedges Managing Director Tel: +44 (0) 1264 387 600 Fax: +44 (0) 1264 356 561

Control Techniques Dynamics operate a quality management system that complies with the requirements of our BS EN ISO 9001:2008 Registered Firm Approval No.FM30610

EC DECLARATION OF CONFORMITY

We, the manufacturer:

Control Techniques Dynamics Ltd. (part of Emerson Industrial Automation)

South Way, Walworth Industrial Estate, Andover, Hampshire SP10 5AB, United Kingdom

Tel: +44 (0) 1264 387 600 Fax: +44 (0) 1264 356 561

Certify and declare under our sole responsibility that the following products:

Name	Unimotor FM (Fan Blown)	
Description	AC Brushless Permanent Magnet Electric Servo Motors	
Catalogue numbers	075U4********,095U4*********,115U4*******,142U4******	
	and 190U4**********	

^{*} maybe any number or letter indicating motor options which do not affect this DoC.

Comply with the essential requirements and provisions of the Low Voltage Directive 2006/95/EC and of the EMC Directive 2004/108/EC based on the following specifications applied:

EU Harmonised Standards under directive 2006/95/EC: EN 60034-1:2004, EN 60034-5:2001, EN 60034-6:1993, EN 60034-7:1993,

EN 60034-8:2007, EN 60034-14:2004, EN 60204-1:2006

EU Harmonised Standards under directive 2004/108/EC: EN 61000-6-2:2005, EN 61000 -6-4:2007

Year of CE Marking: 20010

Signed

Control Techniques Dynamics Ltd.

South Way, Walworth Industrial Estate, Andover, Hampshire SP10 5AB,

United Kingdom

Keith Hedges Tel: +44 (0) 1264 387 600 Managing Director

Fax: +44 (0) 1264 356 561

23rd June 2010

⁺ Added to the right hand side of these part numbers there maybe an additional '-' followed by 4 letters indicating that the motor is a 'special' or has a gearbox is fitted.

9 General Information

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation or adjustment of the optional operating parameters of the equipment or from mismatching the variable speed drive with the motor.

The contents of this guide are believed to be correct at the time of printing. In the interests of a commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the contents of the guide, without notice.

All rights reserved. No parts of this guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by an information storage or retrieval system, without permission in writing from the publisher.

Control Techniques Drive & Application Centres

AUSTRALIA

Melbourne Application Centre T: +613 973 81777 controltechniques.au@emerson.com

Svdnev Drive Centre T: +61 2 9838 7222 controltechniques.au@emerson.com

AUSTRIA

Linz Drive Centre T: +43 7229 789480 controltechniques.at@emerson.com

BELGIUM

Brussels Drive Centre T· +32 1574 0700 controltechniques.be@emerson.com

São Paulo Application Centre T: +55 11/3618 6688 controltechniques.br@emerson.com

CANADA

Toronto Drive Centre T: +1 905 948 3402 controltechniques.ca@emerson.com

Calgary Drive Centre T: +1 403 253 8738 controltechniques.ca@emerson.com

Shanghai Drive Centre T: +86 21 5426 0668 controltechniques.cn@emerson.com

Beijing Application Centre T: +86 10 856 31122 ext 820 controltechniques.cn@emerson.com

CZECH REPUBLIC

Brno Drive Centre T: +420 511 180111 controltechniques.cz@emerson.com

DENMARK

Copenhagen Drive Centre T: +45 4369 6100 control techniques. dk @emerson.com

Angoulême Drive Centre T: +33 5 4564 5454 controltechniques.fr@emerson.com

GERMANY

Bonn Drive Centre T: +49 2242 8770 controltechniques.de@emerson.com

Chemnitz Drive Centre T: +49 3722 52030 controltechniques.de@emerson.com

Darmstadt Drive Centre T: +49 6251 17700 controltechniques.de@emerson.com

Athens Application Centre T: +0030 210 57 86086/088 controltechniques.gr@emerson.com

HOLLAND

Rotterdam Drive Centre T: +31 184 420555 controltechniques.nl@emerson.com

HONG KONG

Hong Kong Application Centre T: +852 2979 5271 controltechniques.hk@emerson.com

INDIA

Chennai Drive Centre T: +91 44 2496 1123/ 2496 1130/2496 1083 controltechniques.in@emerson.com

Pune Application Centre T: +91 20 2612 7956/2612 8415 controltechniques.in@emerson.com

New Delhi Application Centre T: +91 112 2581 3166 controltechniques.in@emerson.com

IRELAND

Newbridge Drive Centre T: +353 45 448200 controltechniques.ie@emerson.com

Milan Drive Centre T: +39 02575 751 controltechniques.it@emerson.com

Reggio Emilia Application Centre T: +39 02575 751 controltechniques.it@emerson.com

Vicenza Drive Centre T: +39 0444 933400 controltechniques.it@emerson.com

KOREA

Seoul Application Centre T· +82 2 3483 1605 controltechniques.kr@emerson.com

MAI AYSIA

Kuala Lumpur Drive Centre T: +603 5634 9776 controltechniques.my@emerson.com

REPUBLIC OF SOUTH AFRICA

Johannesburg Drive Centre T: +27 11 462 1740 controltechniques.za@emerson.com

Cape Town Application Centre T: +27 21 556 0245 controltechniques.za@emerson.com

Moscow Application Centre T: +7 495 981 9811 controltechniques.ru@emerson.com

SINGAPORE

Singapore Drive Centre T: +65 6891 7600 controltechniques.sq@emerson.com

SPAIN

EMERSON A.S T: +421 32 7700 369 controltechniques.sk@emerson.com

controltechniques.es@emerson.com

controltechniques.es@emerson.com

controltechniques.es@emerson.com

controltechniques.se@emerson.com

controltechniques.ch@emerson.com

controltechniques.ch@emerson.com

controltechniques.tw@emerson.com

controltechniques.th@emerson.com

controltechniques.tr@emerson.com

Stockholm Application Centre

Lausanne Application Centre

Barcelona Drive Centre

Bilbao Application Centre

T: +34 93 680 1661

T: +34 94 620 3646

Valencia Drive Centre

T: +34 96 154 2900

T: +468 554 241 00

T: +41 21 637 7070

7urich Drive Centre

T: +41 56 201 4242

Taipei Application Centre

T: +886 2 8161 7695

Bangkok Drive Centre

T: +66 2962 2092 99

Istanbul Drive Centre

T: +90 216 4182420

TAIWAN

THAII AND

TURKEY

SWITZERLAND

SWFDFN*

UAE*

Emerson FZE T: +971 4 8118100 ct.dubai@emerson.com

UNITED KINGDOM

Telford Drive Centre T: +44 1952 213700 controltechniques.uk@emerson.com

Charlotte Application Centre T: +1 704 424 9811 controltechniques.us@emerson.com

Cleveland Drive Centre T: +1 216 901 2400 controltechniques.us@emerson.com

Latin America Sales Office T: +1 305 818 8897 controltechniques.us@emerson.com

Los Angeles Application Centre T· +1 562 943 0300 controltechniques.us@emerson.com

Minneapolis US Headquarters T: +1 952 995 8000 controltechniques.us@emerson.com

Portland Drive Centre T: +1 503 266 2094 controltechniques.us@emerson.com

Providence Application Centre T: +1 401 392 4256 controltechniques.us@emerson.com

Salt Lake City Application Centre T: +1 801 566 5521 controltechniques.us@emerson.com

Control Techniques Distributors

ARGENTINA

Euro Techniques SA T: +54 11 4331 7820 eurotech@eurotechsa.com.ar

BAHRAIN

Emerson FZE T: +971 4 8118100 ct.bahrain@emerson.com

BULGARIA

BLS - Automation Ltd T: +359 32 968 007 info@blsautomation.com

Ingeniería Y Desarrollo Tecnológico S.A T: +56 2 719 2200 rdunner@idt.cl

REXEL CHILE S.A. T: +56 2 768 5230

jmatamala@rexel.cl

COLOMBIA Sistronic LTDA T: +57 2 555 60 00 luis.alvarez@sistronic.com.co

Redes Electricas S.A. T: +57 1 364 7000 alvaro.rodriguez@redeselectricas.com

CROATIA Zigg-Pro d.o.o T: +385 1 3463 000 zigg-pro@zg.htnet.hr

CYPRUS

Acme Industrial Electronic Services Ltd T: +3572 5 332181 acme@cytanet.com.cy

ECUADOR

Veltek Cia. Ltda. T: +59 3 2326 4623 vacosta@veltek.com.ec

Samiram T:+202 29703868/+202 29703869 samiramz@samiram.com

EL SALVADOR

Servielectric Industrial S. A. de C.V. T: +503 2278 1280 aeorellana@gruposervielectric.com

FINI AND

SKS Control T: +358 207 6461 control@sks.fi

GUATEMALA

MICE, S.A. T: +502 5510 2093 mice@itelgua.com

HONDURAS

Temtronics Honduras T: +504 550 1801 temtronics@amnethn.com

HUNGARY Control-VH Kft T: +361 431 1160 info@controlvh.hu

ICELAND

Samey ehf T: +354 510 5200 samey@samey.is

INDONESIA Pit Apikon Indonesia Mekanika Limited
T: +65 6468 8979 T: +35621 442 039
info.my@controltechniques.com mfrancica@gasan.com

Pt Yua Esa Sempurna Sejahtera T: +65 6468 8979 info.my@controltechniques.com

ISRAEL

Dor Drives Systems Ltd T: +972 3900 7595 info@dor1.co.il

KENYA

Kassam & Bros Co. Ltd T: +254 2 556 418 kassambros@africaonline.co.ke

KUWAIT Emerson FZE T: +971 4 8118100

ct.kuwait@emerson.com LATVIA EMT T: +371 760 2026

ianis@emt.lv

LEBANON

Black Box Automation & Control T: +961 1 443773 info@blackboxcontrol.com

LITHUANIA Elinta UAB T: +370 37 351 987 sales@elinta.lt

MALTA

MELCSA S.A. de CV T: +52 55 5561 1312 jcervera@melcsa.com

SERVITECK, S.A de C.V T: +52 55 5398 9591 serviteck@prodigy.net.mx

MOROCCO Cietec T: +212 22 354948 cietec@cietec.ma

NEW ZEALAND Advanced Motor Control. Ph. T: +64 (0) 274 363 067 info.au@controltechniques.com

Intech S.A. T: +51 1 224 9493

PHILIPPINES

Control Techniques Singapore Ltd T: +65 6468 8979 info.my@controltechniques.com

APATOR CONTROL Sp. z o.o T: +48 56 6191 207 info@acontrol.com.pl

PORTUGAL

Harker Sumner S.A T: +351 22 947 8090 drives.automation@harker.pt

PLIERTO RICO

Motion Industries Inc. T: +1 787 251 1550 roberto.diaz@motion-ind.com

OATAR

Emerson FZF T: +971 4 8118100 ct.qatar@emerson.com

ROMANIA

C.I.T. Automatizari T: +40212550543 artur.mujamed@intech-sa.com office@citautomatizari.ro

SAUDI ARABIA

A. Abunayyan Electric Corp. T: +9661 477 9111 aec-salesmarketing@ abunayyangroup.com

SERBIA & MONTENEGRO

Master Inzenjering d.o.o T: +381 24 551 605 office@masterinzenjering.rs

SLOVENIA PS Logatec

T: +386 1 750 8510 ps-log@ps-log.si

URUGUAY SECOIN S.A

T: +5982 2093815 jose.barron@secoin.com.uy

VENEZLIELA

Digimex Sistemas C.A. T: +58 243 551 1634 digimex@digimex.com.ve

VIETNAM

N.Duc Thinh T: +84 8 9490633 infotech@nducthinh.com.vn

© Control Techniques 2011. The information contained in this brochure is for guidance only and does not form part of any contract. The accuracy cannot be guaranteed as Control Techniques have an ongoing process of development and reserve the right to change the specification of their products without notice.

